Skip to main content
Log in

Robust HDR video watermarking method based on saliency extraction and T-SVD

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In order to protect the copyright of the high dynamic range (HDR) video, a robust HDR video watermarking method based on saliency extraction and tensor-singular value decomposition (T-SVD) is proposed. Since T-SVD can not only represent high-dimension data, but also remain its intrinsic structure, each frame of the HDR video is considered as the third-order tensor to be transformed by using T-SVD for preserving the main characteristics of the frame. Each frame is divided into non-overlapping blocks, and each block is decomposed by using T-SVD to obtain the orthogonal tensor \({\mathcal{U}}\), which includes three orthogonal matrices and represents main energies of the frame. Since the second matrix has more correlations of the video frame than other two matrices, it is used to embed watermark for robustness. Moreover, to obtain the trade-off between watermarking robustness and the visual quality, the saliency map of each frame is extracted to predict the most relevant and important areas for determining the watermark embedding strength. The saliency map is computed based on fusing the spatial saliency and the temporal saliency, where the spatial saliency is built by calculating color, intensity and orientation features of the HDR video and the temporal saliency is obtained by using the optical flow. Experiment results show that the proposed watermarking method can resist a variety of tone mapping attacks and video attacks, and is more robust than existing watermarking methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Karr, B.A., Debattista, K., Chalmers, A.G.: Optical effects on HDR calibration via a multiple exposure noise-based workflow. Vis. Comput. 37, 895–910 (2021). https://doi.org/10.1007/s00371-020-01841-5

    Article  Google Scholar 

  2. Hatchett, J., Debattista, K., Mukherjee, R., Rogers, T.B., Chalmers, A.: An evaluation of power transfer functions for HDR video compression. Vis. Comput. 34, 167–176 (2018). https://doi.org/10.1007/s00371-016-1322-0

    Article  Google Scholar 

  3. Zhang, Y., Naccari, M., Agrafiotis, D., Mark, M., Bull, D.R.: High dynamic rang video compressing exploiting luminance masking. IEEE Trans. Circuits Syst. Video Technol. 26(5), 950–964 (2016). https://doi.org/10.1109/TCSVT.2015.2426552

    Article  Google Scholar 

  4. Cagri, O., Paul, L., Giuseppe, V., Frédéric, D.: Spatio-temporal constrained tone mapping operator for HDR video compression. J. Vis. Commun. Image Represent. 55, 166–178 (2018). https://doi.org/10.1016/j.jvcir.2018.06.003

    Article  Google Scholar 

  5. Khwildi, R., Zalid, A.O.: HDR image retrieval by using color-based descriptor and tone mapping operator. Vis. Comput. 36, 1111–1126 (2016). https://doi.org/10.1007/s00371-019-01719-1

    Article  Google Scholar 

  6. Eilertsen, G., Mantiuk, R.K., Unger, J.: A comparative review of tone-mapping algorithms for high dynamic range video. Comput. Graph. Forum. (2017). https://doi.org/10.1111/cgf.13148

    Article  Google Scholar 

  7. Ernawan, F., Kabir, M.N.: A block-based RDWT-SVD image watermarking method using human visual system characteristics. Vis. Comput. 36, 19–37 (2020). https://doi.org/10.1007/s00371-018-1567-x

    Article  Google Scholar 

  8. Wang, X., Hu, K., Hu, J., Du, L., Ho, A.T.S., Qin, H.: Robust and blind image watermarking via circular embedding and bidimensional empirical mode decomposition. Vis. Comput. 36, 2201–2214 (2020). https://doi.org/10.1007/s00371-020-01909-2

    Article  Google Scholar 

  9. Ahmadi, S.B.B., Zhang, G., Wei, S., Boukela, L.: An intelligent and blind image watermarking scheme based on hybrid SVD transforms using human visual system characteristics. Vis. Comput. (2020). https://doi.org/10.1007/s00371-020-01808-6

    Article  Google Scholar 

  10. Zhou, R.G., Hu, W., Fan, P., Luo, G.: Quantum color image watermarking based on Arnold transformation and LSB steganography. Int. J. Quantum Inf. (2018). https://doi.org/10.1142/S0219749918500211

    Article  MathSciNet  MATH  Google Scholar 

  11. Qin, C., Ji, P., Zhang, X., Dong, J., Wang, J.: Fragile image watermarking with pixel-wise recovery based on overlapping embedding strategy. Signal Process 138, 280–293 (2017). https://doi.org/10.1016/j.sigpro.2017.03.033

    Article  Google Scholar 

  12. Cheng, Y.M., Wang, C.M.: A novel approach to steganography in high-dynamic-range images. IEEE Multimed. 16(3), 70–80 (2009). https://doi.org/10.1109/MMUL.2009.43

    Article  Google Scholar 

  13. Li, M.T., Huang, N.C., Wang, C.M.: A data hiding scheme for high dynamic range images. Int. J. Innov. Comput. Inf. Control 7(5), 2021–2035 (2011)

    Google Scholar 

  14. Yu, C.M., Wu, K.C., Wang, C.M.: A distortion-free data hiding scheme for high dynamic range images. Displays 32(5), 225–236 (2011). https://doi.org/10.1016/j.displa.2011.02.004

    Article  Google Scholar 

  15. Lin, Y.T., Wang, C.M., Chen, W.S., Lin, F.P., Lin, W.: A novel data hiding algorithm for high dynamic range images. IEEE Trans. Multimed. 19(1), 196–211 (2017). https://doi.org/10.1109/TMM.2016.2605499

    Article  Google Scholar 

  16. Chang, C.C., Nguyen, T.S., Lin, C.C.: A new distortion-free data embedding scheme for high-dynamic range images. Multimed. Tools Appl. 75(1), 145–163 (2016). https://doi.org/10.1007/s11042-014-2279-5

    Article  Google Scholar 

  17. Wang, X., Hu, K., Hu, J., Du, L., Ho, A.T.S., Qin, H.: Correction to: Robust and blind image watermarking via circular embedding and bidimensional empirical mode decomposition. Vis. Comput. 37, 859 (2021). https://doi.org/10.1007/s00371-020-01948-9

    Article  Google Scholar 

  18. Yuan, Z., Su, Q., Liu, D., Zhang, X.: A blind image watermarking scheme combining spatial domain and frequency domain. Vis. Comput. (2020). https://doi.org/10.1007/s00371-020-01945-y

    Article  Google Scholar 

  19. Shao, Z., Shang, Y., Zeng, R., Coatrieux, G., Wu, J.: Robust watermarking scheme for color image based on quanternion-type moment invariants and visual cryptography. Signal Process. Image Commun. 48, 12–21 (2016)

    Article  Google Scholar 

  20. Fang, H., Zhou, H., Ma, Z., Zhang, W.: A robust image watermarking scheme in DCT domain based on adaptive texture direction quantization. Multimed. Tools Appl. 78(7), 8075–8089 (2019). https://doi.org/10.1007/s11042-018-6596-y

    Article  Google Scholar 

  21. Lee, S.H.: DWT based coding DNA watermarking for DNA copyright protection. Inf. Sci. 273(20), 263–286 (2014). https://doi.org/10.1016/j.ins.2014.03.039

    Article  Google Scholar 

  22. Najafi, E., Loukhaoukha, K.: Hybrid secure and robust image watermarking scheme based on SVD and sharp frequency localized contourlet transform. J. Inf. Sec. Appl. 44, 144–156 (2019). https://doi.org/10.1016/j.jisa.2018.12.002

    Article  Google Scholar 

  23. Hsu, T.Y., Hu, H.T.: A reinforced blind color image watermarking scheme based on Schur decomposition. IEEE Access 7, 107438–107452 (2019). https://doi.org/10.1109/ACCESS.2019.2932077

    Article  Google Scholar 

  24. Jia, S., Zhou, Q., Zhou, H.: A novel color image watermarking scheme based on DWT and QR decomposition. J. Appl. Sci. Eng.. 20(2), 193–200 (2017). https://doi.org/10.6180/jase.2017.20.2.07

    Article  Google Scholar 

  25. Bhardwaj, A., Verma, V.S., KumarJha, R.: Robust video watermarking using significant frame selection based on coefficient difference of lifting wavelet transform. Multimed. Tools Appl. 77, 19658–19678 (2018). https://doi.org/10.1007/s11042-017-5340-3

    Article  Google Scholar 

  26. Esfahani, R., Mohammad, A.A., Norouzi, Z.: A fast video watermarking algorithm using dual tree complex wavelet transform. Multimed. Tools Appl. 78(12), 16159–16175 (2019). https://doi.org/10.1007/s11042-018-6892-6

    Article  Google Scholar 

  27. P. Rasti, S. Samiei, M. Agoyi, S. Escalera, G, Anbarjafari. Robust non-blind color video watermarking using QR decomposition and entropy analysis. Journal of Visual Communication and Image Representation. 38 (2016) 838–847, https://doi.org/10.1016/j.jvcir.2016.05.001.

  28. Hu, H.T., Chang, J.R., Hsu, L.Y.: Robust blind image watermarking by modulating the mean of partly sign-altered DCT coefficients guided by human visual perception. AEU-Int. J. Electr. Commun. 70(10), 1374–1381 (2016). https://doi.org/10.1016/j.aeue.2016.07.011

    Article  Google Scholar 

  29. Lai, C.: An improved SVD-based watermarking scheme using human visual characteristics. Opt. Commun. 284(4), 938–944 (2011). https://doi.org/10.1016/j.optcom.2010.10.047

    Article  Google Scholar 

  30. Hernandez, A.C., Hernandez, M.C., Miyatake, M.N., Meana, H.P.: A spatiotemporal saliency-modulated JND profile applied to video watermarking. J. Vis. Commun. Image Represent. 52, 106–117 (2018). https://doi.org/10.1016/j.jvcir.2018.02.007

    Article  Google Scholar 

  31. Guerrini, F., Okuda, M., Adami, N., Leonardi, R.: High dynamic range image watermarking robust against tone-mapping operators. IEEE Trans. Inf. Forensics Sec. 6(2), 283–295 (2011). https://doi.org/10.1109/TIFS.2011.2109383

    Article  Google Scholar 

  32. Yu, M., Wang, Y., Jiang, G., Bai, Y., Luo, T.: High dynamic range image watermarking based on tucker decomposition. IEEE Access 7, 113053–113064 (2019). https://doi.org/10.1109/ACCESS.2019.2935627

    Article  Google Scholar 

  33. Solachidis, V., Maiorana, E., Campisi, P.: HDR image multi-bit watermarking using bilateral- filtering-based masking. Image Process. Algorithms Syst. XI. 8655, 865505 (2013). https://doi.org/10.1117/12.2005240

    Article  Google Scholar 

  34. Bai, Y., Jiang, G., Yu, M., Peng, Z., Chen, F.: Towards a tone mapping robust watermarking algorithm for high dynamic range image based on spatial activity. Signal Process. Image Commun. 65, 187–200 (2018). https://doi.org/10.1016/j.image.2018.04.005

    Article  Google Scholar 

  35. Daniel, P., Ruby, K., Ugalde, F.G., Sanchez, V.: Watermarking of HDR images in the spatial domain with HVS-Imperceptibility. IEEE Access 8, 156801–156817 (2020). https://doi.org/10.1109/ACCESS.2020.3019517

    Article  Google Scholar 

  36. Kuang, J., Johnson, G.M., Fairchild, M.D.: iCAM06: A refined image appearance model for HDR image rendering. J. Vis. Commun. Image Represent. 18(5), 406–414 (2007). https://doi.org/10.1016/j.jvcir.2007.06.003

    Article  Google Scholar 

  37. Debevec, P., Gibson.,S.: A tone mapping algorithm for high contrast images. In: Proceedings of the 13th Eurographics workshop on Rendering. (2002) pp. 145–156

  38. Bakhsh, F.Y., Moghaddam, M.E.: A robust HDR images watermarking method using artificial bee colony algorithm. J. Inf. Sec. Appl. 41, 12–27 (2018). https://doi.org/10.1016/j.jisa.2018.05.003

    Article  Google Scholar 

  39. Gholamreza, A., Ozcinar, C.: Imperceptible non-blind watermarking and robustness against tone mapping operation attacks for high dynamic range images. Multimed. Tools Appl. 77(18), 24521–24535 (2018). https://doi.org/10.1007/s11042-018-5759-1

    Article  Google Scholar 

  40. Xue, X., Jinno, T., Jin, X., Okuda, M., Goto, S.: Watermarking for HDR image robust to tone mapping. IEICE Trans. Fundament. Electr. Commun. Comput. Sci. 94(11), 2334–2341 (2011). https://doi.org/10.1587/transfun.E94.A.2334

    Article  Google Scholar 

  41. Solachidis, V., Maiorana, E., Campisi, P., Banterle, F.: HDR image watermarking based on bracketing decomposition. IEEE Int. Conf. Dig. Signal Process. (2013). https://doi.org/10.1109/ICDSP.2013.6622687

    Article  Google Scholar 

  42. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011). https://doi.org/10.1016/j.laa.2010.09.020

    Article  MathSciNet  MATH  Google Scholar 

  43. Martin, C.D., Shafer, R., LaRue, B.: An order-p tensor factorization with applications in imaging. SIAM J. Sci. Comput. 35(1), A474–A490 (2013). https://doi.org/10.1137/110841229

    Article  MathSciNet  MATH  Google Scholar 

  44. Itti, L., Dhavale, N., Pighin, F.: Realistic avatar eye and head animation using a neurobiological model of visual attention. Proc. SPIE 2004(5200), 64–78 (2004). https://doi.org/10.1117/12.512618

    Article  Google Scholar 

  45. Br´emond, R., Petit, J., Tarel, J. P.: Saliency maps of high dynamic range images. In: Proceedings of 11th European Conference on Computer Vision, Trends and Topics in Computer Vision (2012) pp. 118–130, https://doi.org/10.1007/978-3-642-35740-4_10.

  46. Kim, M. H., Weyrich, T., Kautz, J.: Modeling human color perception under extended luminance levels. In: ACM SIGGRAPG 2009 paper. 28 (3) (2009) 27, https://doi.org/10.1145/1576246.1531333.

  47. Horn, B., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981). https://doi.org/10.1117/12.965761

    Article  MATH  Google Scholar 

  48. Dong, Y., Pourazad, T.M., Nasiopoulos, P.: Human visual system-based saliency detection for high dynamic range content. IEEE Trans. Multimedia 18(4), 549–562 (2016). https://doi.org/10.1109/TMM.2016.2522639

    Article  Google Scholar 

  49. Uscanga, O. E.: On the fundamental data-base of normal and dichromatic color vision. Doctoral dissertation, Verlag nicht ermittelbar. (1979).

  50. Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. (TOG) 30(4), 1–14 (2011). https://doi.org/10.1145/2010324.1964935

    Article  Google Scholar 

  51. Kang, X., Zhao, F., Lin, G., Chen, Y.: A novel hybrid of DCT and SVD in DWT domain for robust and invisible blind image watermarking with optimal embedding strength. Multimed. Tools Appl. 77(11), 13197–13224 (2018). https://doi.org/10.1007/s11042-017-4941-1

    Article  Google Scholar 

  52. Joshi, A., Gupta, S., Girdhar, M., Agarwal, P., Sarker, R.: Combined DWT–DCT-based video watermarking algorithm using Arnold transform technique. Proc. Int. Conf. Data Eng. Commun. Technol. 468, 455–463 (2017). https://doi.org/10.1007/978-981-10-1675-2_45

    Article  Google Scholar 

  53. Azimi, M., Banitalebi-Dehkordi, A., Dong, Y., and Nasiopoulos, P.: Evaluating the performance of existing full-reference quality metrics on High Dynamic Range (HDR) video content. ICMSP 2014: XII international conference on multimedia signal processing. (2018).

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China under Grant No. 61971247 and 61501270, Zhejiang Provincial Natural Science Foundation of China under Grant No. LY19F020009 and LQ20F010002. It was also sponsored by the K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Song.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Robust HDR video watermarking method based on saliency extraction and T-SVD.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, M., Luo, T., Xu, H. et al. Robust HDR video watermarking method based on saliency extraction and T-SVD. Vis Comput 38, 3775–3789 (2022). https://doi.org/10.1007/s00371-021-02220-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02220-4

Keywords

Navigation