Skip to main content
Log in

Methanogen activity in relation to water table level in two boreal fens

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

We studied methanogen activity—measured by in vitro methane production potential and by detection of the messenger RNA (mRNA) of a functional gene—in two boreal fens under high and deep water table (WT) level conditions resulting from a rainy growing season and a dry growing season. The depth of the highest CH4-producing layers differed between the years. In the wet year, the highest CH4 production rate was around 20 cm below the mean WT. In the dry year, the highest rates were measured close to the peat surface, well above the mean WT. The distribution of activity in the peat profiles of the two fens appeared to be site specific. Under deep-WT conditions, CH4 production potential was generally lower than that under high-WT conditions. Detection of the mRNA of the methanogen-specific mcrA gene indicated in situ methanogenesis in both water-saturated peat (below the WT) and unsaturated peat (above the WT). Analyses of DNA-derived and mRNA-derived methanogen community structures showed greater similarity between those two in water-saturated peat than in unsaturated peat. This suggested that favorable conditions promoted the activity of most members in methanogen communities, but unfavorable conditions showed differences between distinct community members in adaptation to adverse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen BL, Bidoglio G, Leip A, Rembges D (1998) A new method to study simultaneous methane oxidation and methane production in soils. Glob Biogeochem Cycles 12:587–594

    Article  CAS  Google Scholar 

  • Andersson AF, Lundgren M, Eriksson S, Rosenlund M, Bernander R, Nilsson P (2006) Global analysis of mRNA stability in the archaeon Sulfolobus. Genome Biol 7:R99

    Article  PubMed  CAS  Google Scholar 

  • Bergman I, Svensson BH, Nilsson M (1998) Regulation of methane production in a Swedish acid mire by pH, temperature and substrate. Soil Biol Biochem 30:729–741

    Article  CAS  Google Scholar 

  • Drebs A, Nordlund A, Karlsson P, Helminen J, Rissanen P (2002) Climatological statisticsof Finland 1971–2000, vol 1. Finnish Meteorological Institute, Climatic Statistics of Finland, Helsinki. ISBN 951-697-568-2

    Google Scholar 

  • Furukawa Y, Inubushi K, Ali M, Itang AM, Tsuruta H (2005) Effect of changing groundwater levels caused by land-use changes on greenhouse gas fluxes from tropical peat lands. Nutr Cycl Agroecosyst 71:81–91

    Article  CAS  Google Scholar 

  • Galand PE, Saarnio S, Fritze H, Yrjälä K (2002) Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiol Ecol 42:441–449

    Article  CAS  PubMed  Google Scholar 

  • Galand PE, Fritze H, Yrjälä K (2003) Microsite-dependent changes in methanogenic populations in a boreal oligotrophic fen. Environ Microbiol 5:1133–1143

    Article  PubMed  Google Scholar 

  • Hennigan AN, Reeve JN (1994) mRNAs in the methanogenic archaeon Methanococcus vannielii: numbers, half-lives and processing. Mol Microbiol 11:655–670

    Article  CAS  PubMed  Google Scholar 

  • Inubushi K, Hadi A, Okazaki M, Yonebayashi K (1998) Effect of converting wetland forest to sago palm plantations on methane gas flux and organic carbon dynamics in tropical peat soil. Hydrol Process 12:2073–2080

    Article  Google Scholar 

  • Inubushi K, Furukawa Y, Hadi A, Purnomo E, Tsuruta H (2003) Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere 52:603–608

    Article  CAS  PubMed  Google Scholar 

  • Juottonen H, Galand PE, Tuittila E-S, Laine J, Fritze H, Yrjälä K (2005) Methanogen communities and Bacteria along an ecohydrological gradient in a northern raised bog complex. Environ Microbiol 7:1547–1557

    Article  CAS  PubMed  Google Scholar 

  • Juottonen H, Galand PE, Yrjälä K (2006) Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res Microbiol 157:914–921

    Article  CAS  PubMed  Google Scholar 

  • Juottonen H, Tuittila E-S, Juutinen S, Fritze H, Yrjälä K (2008) Seasonality of rDNA- and rRNA-derived archaeal communities and methanogenic potential in a boreal mire. ISME J 2:1157–1168

    Article  CAS  PubMed  Google Scholar 

  • Kettunen A, Kaitala V, Lehtinen A, Lohila A, Alm J, Silvola J, Martikainen PJ (1999) Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biol Biochem 31:1741–1749

    Article  CAS  Google Scholar 

  • Korkama-Rajala T, Müller MM, Pennanen T (2008) Decomposition and fungi of needle litter from slow- and fast-growing Norway spruce (Picea abies) clones. Microb Ecol 56:76–89

    Article  PubMed  Google Scholar 

  • Leppälä M, Kukko-Oja K, Laine J, Tuittila E-S (2008) Seasonal dynamics of CO2 exchange during primary succession of boreal mires as controlled by phenology of plants. Écoscience 15:460–471

    Article  Google Scholar 

  • Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16 S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530

    CAS  PubMed  Google Scholar 

  • McLain JET, Ahmann DM (2008) Increased moisture and methanogenesis contribute to reduced methane oxidation in elevated CO2 soils. Biol Fertil Soils 44:623–631

    Article  CAS  Google Scholar 

  • Merilä P, Galand PE, Fritze H, Tuittila E-S, Kukko-oja K, Laine J, Yrjälä K (2006) Methanogen communities along a primary succession transect. FEMS Microbiol Ecol 55:221–229

    Article  PubMed  CAS  Google Scholar 

  • Nykänen H, Alm J, Tolonen K, Turunen J, Högner J (1998) Methane fluxes on boreal peatlands of different fertility and the effects of long-term experimental lowering of the watertable on flux rates. Glob Biogeochem Cycles 12:53–69

    Article  Google Scholar 

  • Peters V, Conrad R (1995) Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl Environ Microbiol 61:1673–1676

    CAS  PubMed  Google Scholar 

  • Putkinen A, Juottonen H, Juutinen S, Tuittila E-S, Fritze H, Yrjälä K (2009) Archaeal rRNA diversity and methane production in deep boreal peat. FEMS Microbiol Ecol 70:87–98

    Article  CAS  PubMed  Google Scholar 

  • Rinne J, Riutta T, Pihlatie M, Aurela M, Haapanala S, Tuovinen J-P, Tuittila E-S, Vesala T (2007) Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus 59B:449–457

    CAS  Google Scholar 

  • Sundh I, Nilsson M, Granberg G, Svensson BH (1994) Depth distribution of microbial production and oxidation of methane in northern boreal peatlands. Microb Ecol 27:253–265

    Article  CAS  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) Reference manual and CanoDraw for windows user's guide: software for canonical community ordination (version 4.5). Microcomputer power, Ithaca.

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406

    Article  CAS  PubMed  Google Scholar 

  • Tuittila E-S, Komulainen V-M, Vasander H, Nykänen H, Martikainen PJ, Laine J (2000) Methane dynamics of a restored cut-away peatland. Glob Chang Biol 6:569–581

    Article  Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5:316–323

    Article  CAS  PubMed  Google Scholar 

  • Valentine DW, Holland EA, Schimel DS (1994) Ecosystem and physiological controls over methane production in northern wetlands. J Geophys Res 99:1563–1571

    Article  CAS  Google Scholar 

  • von Fischer JC, Hedin LO (2002) Separating methane production and consumption with a field-based isotope pool dilution technique. Glob Biogeochem Cycles 16(3):1034. doi:10.1029/2001GB001448

    Article  CAS  Google Scholar 

  • Watanabe T, Kimura M, Asakawa S (2009) Distinct members of a stable methanogenic archaeal community transcribe mcrA genes under flooded and drained conditions in Japanese paddy field soil. Soil Biol Biochem 41:276–285

    Article  CAS  Google Scholar 

  • Weiss R, Alm J, Laiho R, Laine J (1998) Modeling moisture retention in peat soils. Soil Sci Soc Am J 62:305–313

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Academy of Finland (project codes 118493 and 109816) and by the Finnish Ministry of Trade and Industry through the project “The green house gas balances of restored peatlands.” Juha Puranen is warmly thanked for his accurate laboratory work, and Anuliina Putkinen is acknowledged for her assistance in introducing molecular techniques. Heikki Vesala, Kari Alatalo, Lauri Suutari, and Hannu Autio, from the Finnish Forest Research Institute (Metla) in Muhos and Parkano, are kindly acknowledged for assistance with peat sampling. Anne Siika and Sari Elomaa from Metla in Vantaa are thanked for preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirkka Kotiaho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotiaho, M., Fritze, H., Merilä, P. et al. Methanogen activity in relation to water table level in two boreal fens. Biol Fertil Soils 46, 567–575 (2010). https://doi.org/10.1007/s00374-010-0461-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-010-0461-0

Keywords

Navigation