Skip to main content

Advertisement

Log in

Contrasting effects of cover crops on ‘hot spot’ arbuscular mycorrhizal fungal communities in organic tomato

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungal (AMF) communities are fundamental in organic cropping systems where they provide essential agro-ecosystem services, improving soil fertility and sustaining crop production. They are affected by agronomic practices, but still, scanty information is available about the role of specific crops, crop rotations and the use of winter cover crops on the AMF community compositions at the field sites. A field experiment was conducted to elucidate the role of diversified cover crops and AMF inoculation on AMF diversity in organic tomato. Tomato, pre-inoculated at nursery with two AMF isolates, was grown following four cover crop treatments: Indian mustard, hairy vetch, a mixture of seven species and a fallow. Tomato root colonization at flowering was more affected by AMF pre-transplant inoculation than by the cover crop treatments. An enormous species richness was found by morphological spore identification: 58 AMF species belonging to 14 genera, with 46 and 53 species retrieved at the end of cover crop cycle and at tomato harvest, respectively. At both sampling times, AMF spore abundance was highest in hairy vetch, but after tomato harvest, AMF species richness and diversity were lower in hairy vetch than in the cover crop mixture and in the mustard treatments. A higher AMF diversity was found at tomato harvest, compared with the end of the cover crop cycle, independent of the cover crop and pre-transplant AMF inoculation. Our findings suggest that seasonal and environmental factors play a major role on AMF abundance and diversity than short-term agronomic practices, including AMF inoculation. The huge AMF diversity is explained by the field history and the Mediterranean environment, where species characteristic of temperate and sub-tropical climates co-occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avio L, Castaldini M, Fabiani A, Bedini S, Sbrana C, Turrini A, Giovannetti M (2013) Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biol Biochem 67:285–294

    Article  CAS  Google Scholar 

  • Bedini S, Avio L, Sbrana C, Turrini A, Migliorini P, Vazzana C, Giovannetti M (2013) Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem. Biol Fert Soil 49:781–790

    Article  Google Scholar 

  • Berta G, Copetta A, Gamalero E, Bona E, Cesaro P, Scarafoni A, D’Agostino G (2013) Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field. Mycorrhiza 24:161–170

    Article  PubMed  Google Scholar 

  • Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Biogeosciences 51:923–931

    Article  Google Scholar 

  • Błaszkowski J (2012) Glomeromycota. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences

  • Błaszkowski J, Wubet T, Harikumar VS, Ryszka P, Buscot F (2010) Glomus indicum, a new arbuscular mycorrhizal fungus. Botany 88:132–143

    Article  Google Scholar 

  • Camargo-Ricalde S, Dhillion S (2003) Endemic Mimosa species can serve as mycorrhizal “resource islands” within semiarid communities of the Tehuacán-Cuicatlán Valley, Mexico. Mycorrhiza 13:129–136

    Article  PubMed  Google Scholar 

  • Campiglia E, Caporali F, Radicetti E, Mancinelli R (2010) Hairy vetch (Vicia villosa Roth.) cover crop residue management for improving weed control and yield in no-tillage tomato (Lycopersicon esculentum Mill.) production. Eur J Agron 33:94–102

    Article  Google Scholar 

  • Cesaro P, van Tuinen D, Copetta A, Chatagnier O, Berta G, Gianinazzi S, Lingua G (2008) Preferential colonization of Solanum tuberosum L. roots by the fungus Glomus intraradices in arable soil of a potato farming area. Appl Environ Micro 74:5776–5783

    Article  CAS  Google Scholar 

  • Clark A (2007) Managing cover crops profitably, 3rd edn. U.S. Department of Agriculture, Beltsville

    Google Scholar 

  • Conversa G, Lazzizera C, Bonasia A, Elia A (2013) Yield and phosphorus uptake of a processing tomato crop grown at different phosphorus levels in a calcareous soil as affected by mycorrhizal inoculation under field conditions. Biol Fert Soils 49:691–703

    Article  CAS  Google Scholar 

  • Costanzo A, Bàrberi P (2013) Functional agrobiodiversity and agroecosystem services in sustainable wheat production. A review. Agron Sustain Dev 34:327–348

    Article  Google Scholar 

  • D’Souza J, Rodrigues BF (2013) Biodiversity of arbuscular mycorrhizal (AM) fungi in mangroves of Goa in West India. J For Res 24:515–523

    Article  Google Scholar 

  • Douds DD Jr, Millner PD (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agr Ecosyst Environ 74:77–93

    Article  Google Scholar 

  • Douds DD Jr, Nagahashi G, Reider C, Hepperly PR (2007) Inoculation with arbuscular mycorrhizal fungi increases the yield of potatoes in a high P soil. Biol Agric Hortic 25:67–78

    Article  Google Scholar 

  • Galvez L, Douds DD Jr, Wagoner P, Longnecker LR, Drinkwater LE, Janke RR (1995) An overwintering cover crop increases inoculum of VAM fungi in agricultural soil. Am J Alternative Agr 10:152–156

    Article  Google Scholar 

  • Garland BC, Schroeder-Moreno MS, Fernandez GE, Creamer NG (2011) Influence of summer cover crops and mycorrhizal fungi on strawberry production in the Southeastern United States. Hortsci 46:985–992

    Google Scholar 

  • Gimsing AL, Kirkegaard JA (2006) Glucosinolate and isothiocyanate concentration in soil following incorporation of Brassica biofumigants. Soil Biol Biochem 38:2255–2264

    Article  CAS  Google Scholar 

  • Giovannetti M, Avio L (2002) Biotechnology of arbuscular mycorrhizas. In: George GK, Dilip KA (eds) Applied mycology and biotechnology. Elsevier, Amsterdam, The Netherlands, pp 275–310

    Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring arbuscular mycorrhiza infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C, Scarpato R (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Brit J Nutr 107:242–251

    Article  CAS  PubMed  Google Scholar 

  • Higo M, Isobe K, Drijber RA, Kondo T, Yamaguchi M, Takeyama S, Suzuki Y, Niijima D, Matsuda Y, Ishii R, Torigoe Y (2014) Impact of a 5-year winter cover crop rotational system on the molecular diversity of arbuscular mycorrhizal fungi colonizing roots of subsequent soybean. Biol Fertil Soils 50:913–926

    Article  Google Scholar 

  • Hijri I, Sykorová Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Hill J (2006) Inhibition of vesicular–arbuscular mycorrhizae on soybean roots following Brassica cover crop. J Nat Resour Life Sci Educ 35:158–160

    Google Scholar 

  • Janoušková M, Krak K, Wagg C, Štorchová H, Caklová P, Vosátka M (2013) Effects of inoculum additions in the presence of a preestablished arbuscular mycorrhizal fungal community. Appl Environ Microb 79:6507–6515

    Article  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structures of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Article  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J-M (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fert Soils 37:1–16

    Google Scholar 

  • Karasawa T, Takebe M (2012) Temporal or spatial arrangements of cover crops to promote arbuscular mycorrhizal colonization and P uptake of upland crops grown after nonmycorrhizal crops. Plant Soil 353:355–366

    Article  CAS  Google Scholar 

  • Karasawa T, Kasahara Y, Takebe M (2001) Variable response of growth and arbuscular mycorrhizal colonization of maize plants to preceding crops in various types of soils. Biol Fert Soils 33:286–293

    Article  CAS  Google Scholar 

  • Koide RT, Peoples MS (2012) On the nature of temporary yield loss in maize following canola. Plant Soil 360:259–269

    Article  CAS  Google Scholar 

  • Koske RE, Tessier B (1983) A convenient, permanent slide mounting medium. Mycol Soc Am Newsl 34:59

    Google Scholar 

  • Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Lehman RM, Taheri WI, Osborne SL, Buyer JS, Douds DD Jr (2012) Fall cover cropping can increase arbuscular mycorrhizae in soils supporting intensive agricultural production. Appl Soil Ecol 61:300–304

    Article  Google Scholar 

  • Li L-F, Zhang Y, Zhao Z-W (2007) Arbuscular mycorrhizal colonization and spore density across different land-use types in a hot and arid ecosystem, Southwest China. J Plant Nutr Soil Sci 170:419–425

    Article  CAS  Google Scholar 

  • Liu W, Zheng C, Fu Z, Gai J, Zhang J, Christie P, Li X (2014) Facilitation of seedling growth and nutrient uptake by indigenous arbuscular mycorrhizal fungi in intensive agroecosytems. Biol Fertil Soils 50:381–394

    Article  CAS  Google Scholar 

  • Mäder P, Edenhofer S, Boller T, Wiemken A, Niggli U (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol Fertil Soils 31:150–156

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Oxford, UK: Blackwell Publishing Company

  • Mathimaran N, Ruh R, Vullioud P, Frossard E, Jansa J (2005) Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza 16:61–66

    Article  CAS  PubMed  Google Scholar 

  • Maurer C, Rüdi M, Chervet A, Sturny W, Flisch R, Oehl F (2014) Diversity of arbuscular mycorrhizal fungi in field crops using no-till and conventional tillage practices. Agrarforschung Schweiz 5:398–405

  • Monreal MA, Grant CA, Irvine RB, Mohr RM, McLaren DL, Khakbazan M (2011) Crop management effect on arbuscular mycorrhizae and root growth of flax. Can J Plant Sci 91:315–324

    Article  CAS  Google Scholar 

  • Mosse B (1973) Advances in the study of vesicular-arbuscular mycorrhiza. Annu Rev Phytopathol 11:171–196

    Article  Google Scholar 

  • Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  Google Scholar 

  • Muok BO, Matsumura A, Ishii T, Odee DW (2009) The effect of intercropping Sclerocarya birrea (A. Rich.) Hochst, millet and corn in the presence of arbuscular mycorrhizal fungi. Afr J Biotechnol 8:807–812

    Google Scholar 

  • Njeru E, Avio L, Sbrana C, Turrini A, Bocci G, Bàrberi P, Giovannetti M (2013) First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic maize growth. Agr Sustain Develop. doi:10.1007/s135930130197

    Google Scholar 

  • Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris E-A, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    Article  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agric Ecosyst Environ 134:257–268

    Article  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    Article  CAS  Google Scholar 

  • Oehl F, Sieverding E, Palenzuela J, Ineichen K, Silva GA (2011a) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199

    Article  PubMed Central  PubMed  Google Scholar 

  • Oehl F, Silva GA, Goto BT, Sieverding E (2011b) Glomeromycota: three new genera and glomoid species reorganized. Mycotaxon 116:75–120

    Article  Google Scholar 

  • Omirou M, Ioannides IM, Constantinos E (2013) Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots, but leads to improved colonization and plant response under water stress only. Appl Soil Ecol 63:112–119

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. Accessed 01 Apr 2014

  • Schenck NC, Pérez Y (1990) Manual for the identification of VA mycorrhizal fungi. Synergistic Publications, Gainesville, FL, USA

    Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    Article  PubMed  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhizal management in tropical agrosystems. Deutsche Gesellschaft für Technische Zusammenarbeit 224. Hartmut Bremer Verlag, Friedland, Germany

  • Sivakumar N (2013) Effect of edaphic factors and seasonal variation on spore density and root colonization of arbuscular mycorrhizal fungi in sugarcane fields. Ann Microbiol 63:151–160

    Article  Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal symbiosis (third edition). Academic Press, London

    Google Scholar 

  • Songachan LS, Kayang H (2012) Diversity and distribution of arbuscular mycorrhizal fungi in Solanum species growing in natural condition. Agric Res 1:258–264

    Article  Google Scholar 

  • Tchabi A, Coyne D, Hountondji F, Lawouin L, Wiemken A, Oehl F (2008) Arbuscular mycorrhizal fungal communities in sub-Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza 18:181–195

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Vogelsang KM, Reynolds HL, Bever JD (2006) Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol 172:554–562

    Article  PubMed  Google Scholar 

  • Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA (2011) Mycorrhizal fungal identity and diversity relaxes plant–plant competition. Ecology 92:1303–1313

    Article  PubMed  Google Scholar 

  • Wetzel K, Silva G, Matczinski U, Oehl F, Fester T (2014) Superior differentiation of arbuscular mycorrhizal fungal communities from till and no-till plots by morphological spore identification when compared to T-RFLP. Soil Biol Biochem 72:88–96

    Article  CAS  Google Scholar 

  • White CM, Weil RR (2010) Forage radish and cereal rye cover crop effects on mycorrhizal fungus colonization of maize roots. Plant Soil 328:507–521

    Article  CAS  Google Scholar 

  • Zangaro W, Rostirola L, Souza P, Almeida Alves R, Lescano L, Rondina A, Nogueira M, Carrenho R (2013) Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza 23:221–233

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the EU-RTD FP7 Project SOLIBAM (Strategies for Organic and Low-input Integrated Breeding and Management), Grant Agreement FP7-KBBE 245058, 2010–2014, by the University of Pisa and National Research Council. The Scuola Superiore Sant’Anna of Pisa, Italy, funded the PhD grant of E.M. Njeru. The authors wish to thank Camilla Moonen, Ambrogio Costanzo, Giacomo Nardi and the CIRAA personnel for their precious help in carrying out the field experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Oehl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Njeru, E.M., Avio, L., Bocci, G. et al. Contrasting effects of cover crops on ‘hot spot’ arbuscular mycorrhizal fungal communities in organic tomato. Biol Fertil Soils 51, 151–166 (2015). https://doi.org/10.1007/s00374-014-0958-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-014-0958-z

Keywords

Navigation