Skip to main content
Log in

On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Presented is a review of the radiative properties of ice clouds from three perspectives: light scattering simulations, remote sensing applications, and broadband radiation parameterizations appropriate for numerical models. On the subject of light scattering simulations, several classical computational approaches are reviewed, including the conventional geometric-optics method and its improved forms, the finite-difference time domain technique, the pseudo-spectral time domain technique, the discrete dipole approximation method, and the T-matrix method, with specific applications to the computation of the single-scattering properties of individual ice crystals. The strengths and weaknesses associated with each approach are discussed. With reference to remote sensing, operational retrieval algorithms are reviewed for retrieving cloud optical depth and effective particle size based on solar or thermal infrared (IR) bands. To illustrate the performance of the current solar- and IR-based retrievals, two case studies are presented based on spaceborne observations. The need for a more realistic ice cloud optical model to obtain spectrally consistent retrievals is demonstrated. Furthermore, to complement ice cloud property studies based on passive radiometric measurements, the advantage of incorporating lidar and/or polarimetric measurements is discussed. The performance of ice cloud models based on the use of different ice habits to represent ice particles is illustrated by comparing model results with satellite observations. A summary is provided of a number of parameterization schemes for ice cloud radiative properties that were developed for application to broadband radiative transfer submodels within general circulation models (GCMs). The availability of the single-scattering properties of complex ice habits has led to more accurate radiation parameterizations. In conclusion, the importance of using nonspherical ice particle models in GCM simulations for climate studies is proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnott, W. P., Y. Y. Dong, and J. Hallett, 1995: Extinction efficiency in the infrared (2–18 μm) of laboratory ice clouds: Observations of scattering minima in the Christian bands of ice. Appl. Opt., 34, 541–551.

    Google Scholar 

  • Baran, A. J., 2009: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transfer, 110, 1239–1260.

    Google Scholar 

  • Baran, A. J., 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 45–69.

    Google Scholar 

  • Baran, A. J., and P. N. Francis, 2004: On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements. Quart. J. Roy. Meteor. Soc., 130, 763–778.

    Google Scholar 

  • Baran, A. J., and L. C.-Labonnote, 2006: On the reflection and polarisation properties of ice cloud. J. Quant. Spectrosc. Radiat. Transfer, 100, 41–54.

    Google Scholar 

  • Baran, A. J., P. Yang, and S. Havemann, 2001a: Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: A comparison of the T-matrix and the finitedifference time-domain methods. Appl. Opt., 40, 4376–4386.

    Google Scholar 

  • Baran, A. J., P. N. Francis, S. Havemann, and P. Yang, 2001b: A study of the absorption and extinction properties of hexagonal ice columns and plates in random and preferred orientation, using exact T-matrix theory and aircraft observations of cirrus. J. Quant. Spectrosc. Radiat. Transfer, 70, 505–518.

    Google Scholar 

  • Baran, A. J., P. Hill, K. Furtado, P. Field, and J. Manners, 2014: A coupled cloud Physics-Radiation parameterization of the bulk optical properties of cirrus and its impact on the met office unified model global atmosphere 5.0 configuration. J. Climate, doi: 10.1175/JCLI-D-13-00700.1.

    Google Scholar 

  • Barber, P. W., and S. C. Hill, 1990: Light Scattering by Particles: Computational Methods. World Scientific, 261 pp.

    Google Scholar 

  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005a: Bulk scattering properties for the remote sensing of ice clouds. Part 1: Microphysical data and models. J. Appl. Meteor., 44, 1885–1895.

    Google Scholar 

  • Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, and S. T. Bedka, 2005b: Bulk scattering properties for the remote sensing of ice clouds. Part 2: Narrowband models. J. Appl. Meteor., 44, 1896–1911.

    Google Scholar 

  • Baum, B. A., P. Yang, S. L. Nasiri, A. K. Heidinger, A. J. Heymsfield, and J. Li, 2007: Bulk scattering properties for the remote sensing of ice clouds. Part III: High resolution spectral models from 100 to 3250 cm−1. J. Appl. Meteor. Climate, 46, 423–434.

    Google Scholar 

  • Baum, B. A., P. Yang, Y.-X. Hu, and Q. Feng, 2010: The impact of ice particle roughness on the scattering phase matrix. J. Quant. Spectrosc. Radiant. Transfer, 111, 2534–2549.

    Google Scholar 

  • Baum, B. A., P. Yang, A. J. Heymsfield, C. Schmitt, Y. Xie, A. Bansemer, Y. X. Hu, and Z. Zhang, 2011: Improvements to shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Clim., 50, 1037–1056.

    Google Scholar 

  • Baum, B. A., W. P. Menzel, R. A. Frey, D. Tobin, R. E. Holz, S. A. Ackerman, A. K. Heidinger, and P. Yang, 2012: MODIS cloud top property refinements for Collection 6. J. Appl. Meteor. Climate, 51, 1145–1163.

    Google Scholar 

  • Baum, B. A., P. Yang, A. J. Heymsfield, A. Bansemer, A. Merrelli, C. Schmitt, and C. Wang, 2014: Ice cloud bulk single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm. J. Quant. Spectrosc. Radiant. Transfer, 146, 123–139.

    Google Scholar 

  • Bi, L., and P. Yang, 2014a: Accurate simulation of the optical properties of atmospheric ice crystals with invariant imbedding T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 138, 17–35.

    Google Scholar 

  • Bi, L., and P. Yang, 2014b: High-frequency extinction efficiencies of spheroids: Rigorous T-matrix solutions and semi-empirical approximations. Optics Express, 22, 10270–10293.

    Google Scholar 

  • Bi, L., P. Yang, and G. W. Kattawar, 2010: Edge-effect contribution to the extinction of light by dielectric disks and cylindrical particles. Appl. Opt., 49, 4641–4646.

    Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, 2011a: Diffraction and external reflection by dielectric faceted particles. J. Quant. Spectrosc. Radiat. Transfer, 112, 163–173.

    Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, 2011b: Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method. J. Quant. Spectrosc. Radiat. Transfer, 112, 1492–1508.

    Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, 2013a: A numerical combination of extended boundary condition method and invariant imbedding method to light scattering by large spheroids and cylinders. J. Quant. Spectrosc. Radiat. Transfer, 123, 17–22.

    Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, 2013b: Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles. J. Quant. Spectrosc. Radiat. Transfer, 116, 169–183.

    Google Scholar 

  • Bi, L., P. Yang, C. Liu, B. Yi, B. A. Baum, B. van Diedenhoven, and H. Iwabuchi, 2014: Assessment of the accuracy of the conventional ray-tracing technique: Implications in remote sensing and radiative transfer involving ice clouds. J. Quant. Spectrosc. Radiat. Transfer, 146, 158–174.

    Google Scholar 

  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. Wiley, 544 pp.

    Google Scholar 

  • Borghese, F., P. Denti, and R. Saija, 2007: Scattering from Model Nonspherical Particles. 2nd ed., Springer, 348 pp.

    Google Scholar 

  • Born, M., and E. Wolf, 1959: Principles of Optics. Pergamon Press, Oxford, 936 pp.

    Google Scholar 

  • Borovoi, A. G., and I. A. Grishin, 2003: Scattering matrices for large ice crystal particles. Journal of the Optical Society of America A, 20, 2071–2080.

    Google Scholar 

  • Buriez, J. C., F. Parol, C. Cornet, and M. Doutriaux-Boucher, 2005: An improved derivation of the top-of-atmosphere albedo from POLDER/ADEOS-2: Narrowband albedos. J. Geophys. Res., 110, D05202, doi:10.1029/2004JD005243.

    Google Scholar 

  • Cai, Q., and K. N. Liou, 1982: Polarized light scattering by hexagonal ice crystals: Theory. Appl. Opt., 21, 3569–3580.

    Google Scholar 

  • Chen, G., P. Yang, and G. W. Kattawar, 2008: Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles. Journal of the Optical Society of America A, 25, 785–790.

    Google Scholar 

  • Chepfer, H., G. Brogniez, and Y. Fouquart, 1998: Cirrus clouds’ microphysical properties deduced from POLDER observations. J. Quant. Spectrosc. Radiat. Transfer, 60, 375–390.

    Google Scholar 

  • Chepfer, H., P. Goloub, J. Riedi, J. F. de Haan, and J. W. Hovenier, 2001: Ice crystal shapes in cirrus clouds derived from POLDER-1/ADEOS-1. J. Geophys. Res., 106, 7955–7966.

    Google Scholar 

  • Chiriaco, M., H. Chepfer, V. Noel, A. Delaval, M. Haeffelin, P. Dubuisson, and P. Yang, 2004: Improving retrievals of cirrus cloud particle size coupling lidar and three-channel radiometric techniques. Mon. Wea. Rev., 32, 1684–1700.

    Google Scholar 

  • Cho, H.-M., P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, P. Minnis, C. Tepte, and D. Winker, 2008: Depolarization ratio and attenuated backscatter for nine cloud types: Analyses based on collocated CALIPSO lidar and MODIS measurements. Optics Express, 16, 3931–3948.

    Google Scholar 

  • Cho, H.-M., S. L. Nasiri, and P. Yang, 2009: Application of CALIOP measurements to the evaluation of cloud phase derived from MODIS infrared channels. J. Appl. Meteor. Climate, 48, 2169–2180.

    Google Scholar 

  • Chou, M.-D., K.-T. Lee, and P. Yang, 2002: Parameterization of shortwave cloud optical properties for a mixture of ice particle habits for use in atmospheric models. J. Geophys. Res., 107(D21), AAC 22-1–AAC 22-9, doi: 10.1029/2002JD002061.

    Google Scholar 

  • C.-Labonnote, L., G. Brogniez, J. C. Buriez, and M. Doutriaux-Boucher, 2001: Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements. J. Geophys. Res., 106, 12139–12153.

    Google Scholar 

  • Cole, B. H., P. Yang, B. A. Baum, J. Riedi, L. C.-Labonnote, F. Thieuleux, and S. Platnick, 2013: Comparison of PARASOL observations with polarized reflectances simulated using different ice habit mixtures. J. Appl. Meteor. Climatol., 52, 186–196.

    Google Scholar 

  • Cole, B. H., P. Yang, B. A. Baum, J. Riedi, and L. C.-Labonnote, 2014: Ice particle habit and surface roughness derived from PARASOL polarization measurements. Atmos. Chem. Phys., 14, 3739–3750.

    Google Scholar 

  • Debye, P., 1915: Zerstreuung von Röntgenstrahlen. Ann. Phys., 351, 809–819.

    Google Scholar 

  • Deschamps, P., F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Seze, 1994: The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens., 32, 598–615.

    Google Scholar 

  • Dessler, A. E., and P. Yang, 2003: The distribution of tropical thin cirrus clouds inferred from Terra MODIS data. J. Climate, 16, 1241–1247.

    Google Scholar 

  • DeVoe, H., 1964: Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J. Chem. Phys., 41, 393–400.

    Google Scholar 

  • Doicu, A., T. Wriedt, and Y. Eremin, 2006: Light Scattering by Systems of Particles. Springer, 324 pp.

    Google Scholar 

  • Draine, B. T., and P. J. Flatau, 1994: Discrete dipole approximation for scattering calculations. Journal of the Optical Society of America A, 11, 1491–1499.

    Google Scholar 

  • Ebert, E. E., and J. A. Curry, 1992: A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97, 3831–3836.

    Google Scholar 

  • Ebert, E. E., and J. A. Curry, 1993: An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J. Geophys. Res., 98, 10 085–10 109.

    Google Scholar 

  • Edwards, J. M., S. Havemann, J.-C. Thelen, and A. J. Baran, 2007: A new parameterization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM. Atmos. Res., 83, 19–35.

    Google Scholar 

  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in clouds. J. Atmos. Oceanic Tech., 23, 1357–1371.

    Google Scholar 

  • Foot, J. S., 1988: Some observations of the optical properties of clouds. Part II: Cirrus. Quart. J. Roy. Meteor. Soc., 114, 145–164.

    Google Scholar 

  • Foster, M. J., and A. K. Heidinger, 2013: PATMOS-x: Results from a diurnally corrected 30-yr satellite cloud climatology. J. Climate, 26, 414–425.

    Google Scholar 

  • Francis, P. N., 1995: Some aircraft observations of the scattering properties of ice crystals. J. Atmos. Sci., 52, 1142–1154, doi:10.1175/1520-0469(1995)052<1142:SAOOTS>2.0.CO;2.

    Google Scholar 

  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 2058–2082.

    Google Scholar 

  • Fu, Q., 2007: A new parameterization of an asymmetry factor of cirrus clouds for climate models. J. Atmos. Sci., 64, 4140–4150.

    Google Scholar 

  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008–2025.

    Google Scholar 

  • Fu, Q., W. B. Sun, and P. Yang, 1999: Modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths. J. Atmos. Sci., 56, 2937–2947.

    Google Scholar 

  • Gao, B.-C., and Y. J. Kaufman, 1995: Selection of 1.375 μm MODIS channel for remote sensing of cirrus clouds and stratospheric aerosols from space. J. Atmos. Sci., 52, 4231–4237.

    Google Scholar 

  • Gao, B.-C., A. F. H. Goetz, and W. J. Wiscombe, 1993: Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 μm water vapor band. Geophys. Res. Lett., 20, 301–304.

    Google Scholar 

  • Gao, B.-C., Y. J. Kaufman, W. Han, R. R. Li, and W. J. Wiscombe, 1998: Correction of thin cirrus path radiance in the 0.4–1.0 μm spectral region using the sensitive 1.375-μm channels to retrieve cirrus cloud reflectances from aircraft and satellite data. J. Geophys. Res., 103, 3 2169–3 2176.

    Google Scholar 

  • Gao, B.-C., P. Yang, W. Han, R.-R. Li, and W. Wiscombe, 2002: An algorithm using visible and 1.38-μm channels to retrieve cirrus cloud reflectances from aircraft and satellite data. IEEE Trans. Geosci. Remote Sens., 40, 1659–1668.

    Google Scholar 

  • Gao, B.-C., K. Meyer, and P. Yang, 2004: A new concept on remote sensing of cirrus optical depth and effective ice particle size using strong water vapor absorption channels near 1.38 and 1.88 μm. IEEE Trans. Geosci. Remote Sens., 42, 1891–1899.

    Google Scholar 

  • Garnier, A., J. Pelon, P. Dubuisson, M. Faivre, O. Chomette, N. Pascal, and D. P. Kratz, 2012: Retrieval of cloud properties using CALIPSO Imaging Infrared Radiometer. Part I: Effective emissivity and optical depth. J. Appl. Meteor. Climatol., 51, 1407–1425.

    Google Scholar 

  • Garnier, A., and Coauthors, 2013: Retrieval of cloud properties using CALIPSO imaging infrared radiometer. Part II: Effective diameter and ice water path. J. Appl. Meteor. Climate, 52, 2582–2599.

    Google Scholar 

  • Gayet, J.-F., and Coauthors, 2004: Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experiment. J. Geophys. Res., 109, D20206, doi:10.1029/2004JD004803.

    Google Scholar 

  • Gayet, J.-F., and Coauthors, 2006: Microphysical and optical properties of midlatitude cirrus clouds observed in the southern hemisphere during INCA. Quart. J. Roy. Meteor. Soc., 132, 2719–2748, doi: 10.1256/qj.05.162.

    Google Scholar 

  • Giraud, V., J. C. Buriez, Y. Fouquart, and F. Parol, 1997: Largescale analysis of cirrus clouds from AVHRR data: Assessment of both a microphysical index and the cloud-top temperature. J. Appl. Meteor., 36, 664–675.

    Google Scholar 

  • Gu, Y., J. Farrara, K. N. Liou, and C. R. Mechoso, 2003: Parameterization of cloud-radiation processes in the UCLA general circulation model. J. Climate, 16, 3357–3370.

    Google Scholar 

  • Gu, Y., K. N. Liou, S. C. Ou, and R. Fovell, 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119, doi:10.1029/2010JD014574.

    Google Scholar 

  • Hage, J. I., J. M. Greenberg, and R. T. Wang, 1991: Scattering from arbitrary shaped particles: Theory and experiment. Appl. Opt., 30, 1141–1152.

    Google Scholar 

  • Hansen, J. E., and J. B. Pollack, 1970: Near-infrared light scattering by terrestrial clouds. J. Atmos. Sci., 27, 265–281.

    Google Scholar 

  • Heidinger, A. K., and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 1100–1116.

    Google Scholar 

  • Heidinger, A. K., M. D. Goldberg, D. Tarpley, A. Jelenak, and M. J. Pavolonis, 2005: A new AVHRR cloud climatology. Proc. SPIE, 5658, 197–205.

    Google Scholar 

  • Hess, M., and M. Wiegner, 1994: COP: A data library of optical properties of hexagonal ice crystals. Appl. Opt., 33, 7740–7746.

    Google Scholar 

  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831–844.

    Google Scholar 

  • Heymsfield, A. J., K. M. Miller, and J. D. Spinhirne, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Cloud microstructure. Mon. Wea. Rev., 118, 2313–2328,, doi: http://dx.doi.org/10.1175/1520-0493(1990)118<2313:TOFICC>2.0.CO;2.

    Google Scholar 

  • Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot, 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59, 3–29.

    Google Scholar 

  • Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2013: Ice cloud particle size distributions and Pressure-Dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 4123–4154.

    Google Scholar 

  • Hillger, D., and Coauthors, 2013: First-light imagery from Suomi NPP VIIRS. Bull. Amer. Meteor. Soc., 94, 1019–1029.

    Google Scholar 

  • Hong, G., P. Yang, B. A. Baum, A. J. Heymsfield, and K.-M. Xu, 2009a: Parameterization of shortwave and longwave radiative properties of ice clouds for use in climate models. J. Climate, 22, 6287–6312.

    Google Scholar 

  • Hong, G., P. Yang, B. A. Baum, A. J. Heymsfield, F. Weng, Q. Liu, G. Heygster, and S. A. Buehler, 2009b: Scattering database in the millimeter and submillimeter wave range of 100–100 GHz for nonspherical ice particles. J. Geophys. Res., 114, D06201, doi:10.1029/2008JD010451.

    Google Scholar 

  • Houghton, J. T., and G. E. Hunt, 1971: The detection of ice clouds from remote measurements of their emission in the far-infrared. Quart. J. Roy. Meteor. Soc., 97, 1–17.

    Google Scholar 

  • Hu, Y.-X., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Ocean. Technol., 26, 2293–2309.

    Google Scholar 

  • Huang, H.-L, P. Yang, H.-L. Wei, B. A. Baum, Y.-X. Hu, P. Antonelli, and S. A. Ackerman, 2004: Retrieval of ice cloud properties from high spectral resolution infrared observations. IEEE Trans. Geosci, Remote Sens., 42, 842–853.

    Google Scholar 

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    Google Scholar 

  • Iaquinta, J., H. Isaka, and P. Personne, 1995: Scattering phase function of bullet ice crystals. J. Atmos. Sci., 52, 1401–1413.

    Google Scholar 

  • Inoue, T., 1985: On the temperature and effective emissivity determination of semitransparent cirrus clouds by bi-spectral measurements in the 10-μm window region. J. Meteor. Soc. Japan, 63, 88–89.

    Google Scholar 

  • Iwabuchi, H., S. Yamada, S. Katagiri, P. Yang, and H. Okamoto, 2014: Radiative and microphysical properties of cirrus cloud inferred from infrared measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS). Part I: Retrieval method. J. Appl. Meteor. Climate, 53, 1297–1316.

    Google Scholar 

  • Jackson, J. D., 1975: Classical Electrodynamics. 2nd ed., Wiley, 880 pp.

    Google Scholar 

  • Jackson, R. C., and G. M. McFarquhar, 2014: An assessment of the impact of anti-shattering tips and artifact removal techniques on bulk cloud ice microphysical and optical properties measured by the 2D cloud probe. J. Oceanic Atmos. Tech., doi: 10.1175/JTECH-D-14-00018.1.

    Google Scholar 

  • Jacobowitz, H., 1971: A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 11, 691–695.

    Google Scholar 

  • Johnson, B. R., 1988: Invariant imbedding T-matrix approach to electromagnetic scattering. Appl. Opt., 27, 4861–4873.

    Google Scholar 

  • Kahn, B. H., and Coauthors, 2014: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399–426.

    Google Scholar 

  • Kahnert, F. M., 2003: Numerical methods in electromagnetic scattering theory. J. Quant. Spectrosc. Radiat. Transf., 79–80, 775–824.

    Google Scholar 

  • Kahnert, M., 2013: The T-matrix code Tsym for homogeneous dielectric particles with finite symmetries. J. Quant. Spectrosc. Radiat. Transfer, 123, 67–78.

    Google Scholar 

  • Karlsson, K.-G., and Coauthors, 2013: CLARA-A1: A cloud, albedo, and radiation dataset from 28 yr of global AVHRR data. Atmos. Chem. Phys., 13, 5351–5367.

    Google Scholar 

  • Key, J. R., P. Yang, B. A. Baum, and S. L. Nasiri, 2002: Parameterization of shortwave ice cloud optical properties for various particle habits. J. Geophys. Res., 107, AAC 7-1–AAC 7-10, doi:10.1029/2001JD000742.

    Google Scholar 

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The national center for atmospheric research community climate model: CCM3. J. Climate, 11, 1131–1149.

    Google Scholar 

  • Kim, M.-J., 2006: Single scattering parameters of randomly oriented snow particles at microwave frequencies. J. Geophys. Res., 111, D14201, doi:10.1029/2005JD006892.

    Google Scholar 

  • King, M. D., 1987: Determination of the scaled optical thickness of clouds from reflected solar radiation measurements. J. Atmos. Sci., 44, 1734–1751.

    Google Scholar 

  • King, M. D., Y. J. Kaufman, W. P. Menzel, and D. Tanre, 1992: Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens., 30, 2–27.

    Google Scholar 

  • King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K. N. Liou, 2004: Remote sensing of liquid water and ice cloud optical thickness, and effective radius in the Arctic: Application of air-borne multispectral MAS data. J. Atmos. and Ocean. Technol., 21, 857–875.

    Google Scholar 

  • Korolev, A. V., E. G. Emery, J.W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation Experiment. Bull. Amer. Meteor. Soc., 92, 967–973.

    Google Scholar 

  • Korolev, A. V., E. Emery, and K. Creelman, 2013a: Modification and tests of particle probe tips to mitigate effects of ice shattering. J. Atmos. Oceanic Technol., 30, 690–708.

    Google Scholar 

  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, and G. A. Isaac, 2013b: Quantification of the effects of shattering on airborne ice particle measurements. J. Atmos. Oceanic. Technol., 30, 2527–2553.

    Google Scholar 

  • Lakhtakia, A., 1992: Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic-fields. International Journal of Modern Physics A, 3, 583–603.

    Google Scholar 

  • Lakhtakia, A., V. K. Varadan, and V. V. Varadan, 1984: Iterative extended boundary condition method for scattering by objects of high aspect ratio. Journal of the Acoustical Society of America, 76, 906–912.

    Google Scholar 

  • Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 1361–1381.

    Google Scholar 

  • Lee, E. L., S. D. Miller, and F. J. Turk, 2010: The NPOESS VIIRS day/night visible sensor. Bull. Amer. Meteor. Soc., 87, 191–199.

    Google Scholar 

  • Lee, J., P. Yang, A. Dessler, B.-C. Gao, and S. Platnick, 2009: Distribution and radiative forcing of tropical thin cirrus clouds. J. Atmos. Sci., 66, 3721–3731.

    Google Scholar 

  • Li, J., and Coauthors, 2005: Retrieval of cloud microphysical properties from MODIS and AIRS. J. Appl. Meteor. 44, 1526–1543.

    Google Scholar 

  • Liou, K. N., 1972a: Electromagnetic scattering by arbitrarily oriented ice cylinders. Appl. Opt., 11, 667–674.

    Google Scholar 

  • Liou, K. N., 1972b: Light scattering by ice clouds in the visible and infrared: A theoretical study. J. Atmos. Sci., 29, 524–536.

    Google Scholar 

  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 1167–1199.

    Google Scholar 

  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. Academic Press, 583 pp.

    Google Scholar 

  • Liou, K. N., and J. E. Hansen, 1971: Intensity and polarization for single scattering by polydisperse spheres: A comparison of ray optics and Mie theory. J. Atmos. Sci., 28, 995–1004.

    Google Scholar 

  • Liou, K. N., Y. Takano, and P. Yang, 2000: Light scattering and radiative transfer by ice crystal clouds: Applications to climate research. Chapter 15, Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mishchenko et al., Eds., Academic Press, 417–449.

    Google Scholar 

  • Liou, K. N., Y. Takano, P. Yang, and Y. Gu, 2001: Radiative transfer in cirrus clouds: Light scattering and spectral information. Cirrus, D. Lynch et al., Eds., Oxford University Press, New York, 265–296.

    Google Scholar 

  • Liou, K. N., Y. Takano, and P. Yang, 2010: On geometric optics and surface waves for light scattering by spheres. J. Quant. Spectrosc. Radiat. Transfer, 111, 1980–1989.

    Google Scholar 

  • Liou, K. N., Y. Takano, and P. Yang, 2011: Light absorption and scattering by aggregates: Application to black carbon and snow grains. J. Quant. Spectrosc. Radiat. Transfer, 112, 1581–1594.

    Google Scholar 

  • Liu, C., R. L. Panetta, and P. Yang, 2012a: Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200. J. Quant. Spectrosc. Radiat. Transfer, 113, 1728–1740.

    Google Scholar 

  • Liu, C., L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, 2012b: Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations. Opt. Express, 20, 16763–16776.

    Google Scholar 

  • Liu, C., P. Yang, P. Minnis, N. Loeb, S. Kato, A. Heymsfield, and C. Schmitt, 2014: A two-habit model for the microphysical and optical properties of ice clouds. Atmos. Chem. Phys. 14, 19 545–19 586.

    Google Scholar 

  • Liu, Q. H., 1997: The PSTD algorithm: A time-domain method requiring only two cells per wavelength. Microwave Opt. Technol. Lett., 15, 158–165.

    Google Scholar 

  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 1563–1570.

    Google Scholar 

  • Logan, N., 1965: Survey of some early studies of the scattering of plane waves by a sphere. Proceedings of the IEEE. Institute of Electrical and Electronics Engineers (IEEE), 53, 773–785.

    Google Scholar 

  • Lynch, D. K., K. Sassen, D. O. Starr, and G. Stephens, 2002: Cirrus. Oxford University Press, 504 pp.

    Google Scholar 

  • Macke, A., 1993: Scattering of light by polyhedral ice crystals. Appl. Opt., 32, 2780–2788.

    Google Scholar 

  • Macke, A., M. I. Mishchenko, K. Muinonen, and B. E. Carlson, 1995: Scattering of light by large nonspherical particles: ray tracing approximation versus T-matrix method. Opt. Lett., 20, 1934–1936.

    Google Scholar 

  • Macke, A., J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystal. J. Atmos. Sci., 53, 2813–2825.

    Google Scholar 

  • Macke, A., P. N. Francis, G. M. McFarquhar, and S. Kinne, 1998: The role of ice particle shapes and size distributions in the single scattering properties of cirrus clouds. J. Atmos. Sci., 55, 2874–2883, doi: 10.1175/1520-0469(1998)055<2874: TROIPS>2.0.CO;2.

    Google Scholar 

  • Mackowski, D. W., 2002: Discrete dipole moment method for calculation of the T-matrix for nonspherical particles. Journal of the Optical Society of America A, 19, 881–893.

    Google Scholar 

  • Mackowski, D. W., and M. I. Mishchenko, 1996: Calculation of the T matrix and the scattering matrix for ensembles of spheres. Journal of the Optical Society of America A, 13, 2266–2278.

    Google Scholar 

  • Mackowski, D. W., and M. I. Mishchenko, 2011: A multiple sphere T-matrix Fortran code for use on parallel computer clusters. J. Quant. Spectrosc. Radiat. Transfer, 112, 2182–2192.

    Google Scholar 

  • McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single-scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci., 59, 2458–2478.

    Google Scholar 

  • McFarquhar, G. M., S. Iacobellis, and R. C. J. Somerville, 2003: SCM simulations of tropical ice clouds using observationally based parameterizations of microphysics. J. Climate, 16, 1643–1664.

    Google Scholar 

  • Meyer, K., P. Yang, and B.-C. Gao, 2007a: Ice cloud optical depth from MODIS cirrus reflectance. IEEE Geoscience and Remote Sensing Lett., 4, 471–474.

    Google Scholar 

  • Meyer, K., P. Yang, and B.-C. Gao, 2007b: Tropical ice cloud optical depth, ice water path, and frequency fields inferred from the MODIS level-3 data. Atmos. Res., 85, 171–182.

    Google Scholar 

  • Minnis, P., K. N. Liou, and Y. Takano, 1993a: Inference of cirrus cloud properties using satellite-observed visible and infrared radiances, Part I: Parameterization of radiance fields. J. Atmos. Sci., 50, 1279–1304.

    Google Scholar 

  • Minnis, P., P. W. Heck, and D. F. Yong, 1993b: Inference of cirrus cloud properties using satellite-observed visible and infrared radiances, Part II: Verification of theoretical cirrus radiative properties. J. Atmos. Sci., 50, 1305–1322.

    Google Scholar 

  • Minnis, P. S., and Coauthors, 2011: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens, 49, 4374–4399.

    Google Scholar 

  • Mishchenko, M. I., 1991: Light scattering by randomly oriented axially symmetric particles. Journal of the Optical Society of America A, 8, 871–882.

    Google Scholar 

  • Mishchenko, M. I., and A. Macke, 1998: Incorporation of physical optics effects and δ-function transmission. J. Geophys. Res., 103, 1799–1805.

    Google Scholar 

  • Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, 1996: Tmatrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 55, 535–575.

    Google Scholar 

  • Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309–324.

    Google Scholar 

  • Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, 2000: Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. Academic Press, 690 pp.

    Google Scholar 

  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption and Emission of Light by Small Particles. Cambridge University Press, 445 pp.

    Google Scholar 

  • Mitchell, D. L., A. Macke, and Y. G. Liu, 1996: Modeling cirrus clouds. Part II: Treatment of radiative properties. J. Atmos. Sci., 53, 2967–2988.

    Google Scholar 

  • Mitchell, D. L., A. J. Baran, W. P. Arnott, and C. Schmitt, 2006: Testing and comparing the modified anomalous diffraction approximation. J. Atmos. Sci., 63, 2948–2962.

    Google Scholar 

  • Morse, P. M., and H. Feshbach, 1953: Methods of Theoretical Physics, Part I. McGraw-Hill, 997 pp.

    Google Scholar 

  • Muinonen, K., 1989: Scattering of light by crystals: A modified Kirchhoff approximation. Appl. Opt., 28, 3044–3050.

    Google Scholar 

  • Muinonen, K, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, 1996: Light scattering by Gaussian random particles: Ray optics approximation. J. Quant. Spectrosc. Radiat. Trans., 55, 577–601.

    Google Scholar 

  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 1878–1893.

    Google Scholar 

  • Neshyba, S. P., B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, 2013: Roughness metrics of prismatic facets of ice. J. Geophys. Res., 118, 3309–3318.

    Google Scholar 

  • Nieminen, T. A., H. Rubinsztein-Dunlop, and N. R. Heckenberg, 2003: Calculation of the T-matrix: General considerations and application of the point-matching method. J. Quant. Spectrosc. Radiat. Transfer, 79–80, 1019–1029.

    Google Scholar 

  • Noel, V., and H. Chepfer, 2010: A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). J. Geophys. Res., 115, D00H23, doi:10.1029/2009JD012365.

    Google Scholar 

  • Nousiainen, T., and G. M. McFarquhar, 2004: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci., 61, 2229–2248.

    Google Scholar 

  • Nousiainen, T., and K. Muinonen, 2007: Surface roughness effects on single-scattering properties of wavelength-scale particles. J. Quant. Spectrosc. Radiat. Transfer, 106, 389–397.

    Google Scholar 

  • Nussenzveig, H. M., 1979: Complex angular momentum theory of the rainbow and the glory. Journal of the Optical Society of America A, 69, 1068–1079.

    Google Scholar 

  • Nussenzveig, H. M., 1992: Diffraction Effects in Semiclassical Scattering. Cambridge University Press, 256 pp.

    Google Scholar 

  • Nussenzveig, H. M., and W. J. Wiscombe, 1980: Efficiency factor in Mie scattering. Phys. Rev. Lett., 45, 1490–1494.

    Google Scholar 

  • Panetta, R. L., C. Liu, and P. Yang, 2013: A pseudo-spectral time domain method for light scattering computation. Light Scattering Reviews 8, A. Kokhanovsky, Ed., Springer-Praxis Publishing, 139–187.

    Google Scholar 

  • Parol, F., J. C. Buriez, G. Brogniez, and Y. Fouquart, 1991: Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles. J. Appl. Meteor., 30, 973–984.

    Google Scholar 

  • Penttila, A., and Coauthors, 2007: Comparison between discrete dipole implementations and exact techniques. J. Quant. Spectrosc. Radiat. Transfer, 106, 417–436.

    Google Scholar 

  • Peterson, B., and S. Ström, 1973: T-matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3). Phys. Rev. D, 8, 3661–3678.

    Google Scholar 

  • Petty, G. W., and W. Huang, 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769–787.

    Google Scholar 

  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459–473.

    Google Scholar 

  • Platt, C. M. R., and Harshvardhan, 1988: Temperature dependence of cirrus extinction: Implications for climate feedback. J. Geophys. Res., 93, 11051–11058.

    Google Scholar 

  • Podowitz, D. I., C. Liu, P. Yang, and M. A. Yurkin, 2014: Comparison of the pseudo-spectral time domain method and the discrete dipole approximation for light scattering by ice spheres. J. Quant. Spectrosc. Radiat. Transfer, 146, 402–409.

    Google Scholar 

  • Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16, 123–146.

    Google Scholar 

  • Popov, A. A., 1996: New method for calculating the characteristics of light scattering by spatially oriented atmospheric crystals. Proc. SPIE, 2822, 186–194.

    Google Scholar 

  • Poulsen, C., and Coauthors, 2012: Cloud retrievals from satellite data using optimal estimation: Evaluation and application to ATSR. Atmos. Meas. Tech., 5, 1889–1910.

    Google Scholar 

  • Prabhakara, C., R. S. Fraser, G. Dalu, M. C. Wu, R. J. Curran, and T. Styles, 1988: Thin cirrus clouds: Seasonal distribution over oceans deduced from Nimbus-4 IRIS. J. Appl. Meteor., 27, 379–399.

    Google Scholar 

  • Purcell, E. M., and C. R. Pennypacker, 1973: Scattering and absorption of light by nonspherical dielectric grains. Astrophysicaz Journal, 186, 705–714.

    Google Scholar 

  • Ramaswamy, V., and A. Detwiler, 1986: Interdependence of radiation and microphysics in cirrus clouds. J. Atmos. Sci., 43, 2289–2301.

    Google Scholar 

  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 238 pp.

    Google Scholar 

  • Roebeling, R. A., A. J. Feijt, and P. Stammes, 2006: Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res., 111, D20210, doi:10.1029/2005JD006990.

    Google Scholar 

  • Rolland, P., and K. N. Liou, 2001: Surface variability effects on the remote sensing of thin cirrus optical and microphysical properties. J. Geophys. Res., 106, 22965–22977.

    Google Scholar 

  • Rolland, P., K. N. Liou, M. D. King, S.-C. Tsay, and G. M. McFarquhar, 2000: Remote sensing of optical and microphysical properties of cirrus clouds using Moderate-Resolution Imaging Spectroradiometer channels: methodology and sensitivity to physical assumptions. J. Geophys. Res., 105, 11721–11738.

    Google Scholar 

  • Roskovensky, J., and K. N. Liou, 2003a: Detection of thin cirrus using a combination of 1.38-μm reflectance and window brightness temperature difference. J. Geophys. Res., 108, doi:10.1029/2002JD003346.

  • Roskovensky, J. K., and K. N. Liou, 2003b: Detection of thin cirrus from 1.38 μm/0.65 μm reflectance ratio combined with 8.6-11 μm brightness temperature difference. Geophys. Res. Lett., 30, doi:10.1029/2003GL018135.

    Google Scholar 

  • Roskovensky, J. K., and K. N. Liou, 2005: Differentiating airborne dust from cirrus clouds using MODIS data. Geophy. Res. Lett., 32, L12809, doi:10.1029/2005GL022798.

    Google Scholar 

  • Roskovensky, J. K., K. N. Liou, T. J. Garrett, and D. Baumgardner, 2004: Simultaneous retrieval of aerosol and thin cirrus optical depths using MODIS airborne simulator data during CRYSTAL-FACE and CLAMS. Geophy. Res. Lett., 31, doi:10.1029/2004GL020457.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–2288.

    Google Scholar 

  • Saxon, D. S., 1973: Lectures on the scattering of light. Proceedings of the UCLA International Conference on Radiation and Remote Sensing of the Atmosphere, J. G. Kuriyan, Ed., Western Periodicals, 27–308.

    Google Scholar 

  • Shcherbakov, V., J. F. Gayet, O. Jourdan, J. Ström, and A. Minikin, 2006: Light scattering by single ice crystals of cirrus clouds. Geophys. Res. Lett., 33, L15809, doi: 10.1029/2006GL026055.

    Google Scholar 

  • Slingo, A., 1989: A GCM Parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci., 46, 1419–1427.

    Google Scholar 

  • Starr, D. O’C., and D. P. Wylie, 1990: The 27–28 October 1986 fire cirrus case study: meteorology and clouds. Mon. Wea. Rev., 118, 2259–2287.

    Google Scholar 

  • Stengel, M., and Coauthors, 2014: The Clouds Climate Change Initiative: Assessment of state-of-the-art cloud property retrieval schemes applied to AVHRR heritage measurements. Remote Sens. Environ., doi: 10.1016/j.rse.2013.10.035.

    Google Scholar 

  • Stephens, G., 1980a: Radiative properties of cirrus clouds in the infrared region. J. Atmos. Sci., 37, 435–446.

    Google Scholar 

  • Stephens, G., 1980b: Radiative transfer on a linear lattice: Application to anisotropic ice crystal clouds. J. Atmos. Sci., 37, 2095–2104.

    Google Scholar 

  • Stephens, G. L., S.-C. Tsay, P. W. Stackhouse Jr., and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47, 1742–1754.

    Google Scholar 

  • Sun, B., P. Yang, and G. W. Kattawar, 2013: Many-body iterative T-matrix method for large aspect ratio particles. J. Quant. Spectrosc. Radiat. Transfer, 127, 165–175.

    Google Scholar 

  • Sun, W., Q. Fu, and Z. Chen, 1999: Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition. Appl. Opt., 38, 3141–3151.

    Google Scholar 

  • Sun, W., G. Videen, S. Kato, B. Lin, C. Lukashin, and Y. Hu, 2011: A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data. J. Geophys. Res., 116, D22207, doi: 10.1029/2011JD016422.

    Google Scholar 

  • Sun, Z., and K. P. Shine, 1995: Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed-phase clouds. J. Climate, 8, 1874–1888.

    Google Scholar 

  • Takano, Y., and K. N. Liou, 1989a: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 3–19.

    Google Scholar 

  • Takano, Y., and K. N. Liou, 1989b: Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium. J. Atmos. Sci., 46, 20–36.

    Google Scholar 

  • Takano, Y., and K. N. Liou, 1995: Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals. J. Atmos. Sci., 52, 818–837.

    Google Scholar 

  • Takano, Y., K. N. Liou, and P. Yang, 2012: Diffraction by rectangular parallelepiped, hexagonal cylinder, and three-axis ellipsoid: some analytic solutions and numerical results. J. Quant. Spectrosc. Radiat. Transfer, 113, 1836–1843.

    Google Scholar 

  • Takano, Y., K. N. Liou, M. Kahnert, and P. Yang, 2013: The singlescattering properties of black carbon aggregates determined from the geometric-optics surface-wave approach and the Tmatrix method. J. Quant. Spectrosc. Radiat. Transfer, 125, 51–56.

    Google Scholar 

  • Twomey, S., and T. Cocks, 1982: Spectral reflectance of clouds in the near-infrared: Comparison of measurements and calculations. J. Meteor. Soc. Japan, 60, 583–592.

    Google Scholar 

  • Twomey, S., and T. Cocks, 1989: Remote sensing of cloud parameters from spectral reflectance in the near-infrared. Beitr. Phys. Atmos., 62, 172–179.

    Google Scholar 

  • Um, J., and G. M. McFarquhar, 2007: Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteor. Climatol., 46, 757–775.

    Google Scholar 

  • Ulanowski, Z., E. Hesse, P. H. Kaye, and A. J. Baran, 2006: Light scattering by complex ice-analogue crystals. J. Quant. Spectrosc. Radiat. Transfer, 100, 382–392.

    Google Scholar 

  • Ulanowski, Z., P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, 2014: Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements. Atmos. Chem. Phys., 14, 1649–1662.

    Google Scholar 

  • van de Hulst, H. C., 1957: Light Scattering by Small Particles. Wiley, 470 pp.

    Google Scholar 

  • van Diedenhoven, B., B. Cairns, I. V. Geogdzhayev, A. M. Fridlind, A. S. Ackerman, P. Yang, and B. A. Baum, 2012: Remote Sensing of ice crystal asymmetry parameter using multi-directional polarization measurements—Part 1: Methodology and evaluation with simulated measurements. Atmos. Meas. Tech., 5, 2361–2374.

    Google Scholar 

  • van Diedenhoven, B., B. Cairns, A. M. Fridlind, A. S. Ackerman, and T. J. Garrett, 2013: Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements-Part 2: Application to the Research Scanning Polarimeter. Atmos. Chem. Phys., 13, 3185–3203.

    Google Scholar 

  • van Diedenhoven, B., A. S. Ackerman, B. Cairns, and A. M. Fridlind, 2014: A flexible parameterization for shortwave optical properties of ice crystals. J. Atmos. Sci., 71, 1763–1782.

    Google Scholar 

  • Walther, A., and A. K. Heidinger, 2012: Implementation of the daytime cloud optical and microphysical properties algorithm (DCOMP) in PATMOS-x. J. Appl. Meteor. Climatol., 51, 1371–1390.

    Google Scholar 

  • Wang, C., P. Yang, B. A. Baum, S. Platnick, A. K. Heidinger, Y. Hu, and R. E. Holz, 2011: Retrieval of ice cloud optical thickness and effective particle size using a fast infrared radiative transfer model. J. Appl. Meteor. Climatol., 50, 2283–2297.

    Google Scholar 

  • Wang, C., S. Ding, P. Yang, B. A. Baum, and A. E. Dessler, 2012: A new approach to retrieving cirrus cloud height with a combination of MODIS 1.24- and 1.38-μm channels. Geophys. Res. Lett., 39, L24806, doi:10.1029/2012GL053854.

    Google Scholar 

  • Wang, C. X., P. Yang, A. Dessler, B. A. Baum, and Y. Hu, 2014: Estimation of the cirrus cloud scattering phase function from satellite observations. J. Quant. Spectrosc. Radiat. Transfer, 138, 36–49.

    Google Scholar 

  • Waterman, P. C., 1965: Matrix formulation of electromagnetic scattering. Proc. IEEE, 53, 805–812.

    Google Scholar 

  • Waterman, P. C., 1971: Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D, 3, 825–839.

    Google Scholar 

  • Watts, P. D., R. Bennartz, and F. Fell, 2011: Retrieval of twolayer cloud properties from multispectral observations using optimal estimation. J. Geophys. Res., 116, D16203, doi:10.1029/2011JD015883.

    Google Scholar 

  • Wendisch, M., and P. Yang, 2012: Theory of Atmospheric Radiative Transfer: A Comprehensive Introduction. Wiley, 321 pp.

    Google Scholar 

  • Wendisch, M., P. Yang, and P. Pilewskie, 2007: Effects of ice crystal habit on the thermal infrared radiative properties and forcing of cirrus clouds. J. Geophys. Res., 112, D08201, doi:10.1029/2006JD007899.

    Google Scholar 

  • Wendling, P., R. Wendling, and H. K. Weickmann, 1979: Scattering of solar radiation by hexagonal ice crystals. Appl. Opt., 18, 2663–2671.

    Google Scholar 

  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 2310–2323.

    Google Scholar 

  • Wiscombe, W. J., 1980: Improved Mie scattering algorithms. Appl. Opt., 19, 1505–1509.

    Google Scholar 

  • Wiscombe, W. J., and A. Mugnai, 1986: Single scattering from nonspherical Chebyshev particles: A compendium of calculations. NASA Ref. Publ. 1157, NASA/GSFC Greenbelt, MD.

    Google Scholar 

  • Wriedt, T., 2009: Light scattering theories and computer codes. J. Quant. Spectrosc. Radiat. Transfer, 110, 833–843.

    Google Scholar 

  • Xie, Y., P. Yang, K. N. Liou, P. Minnis, and D. P. Duda, 2012: Parameterization of contrail radiative properties for climate studies. Geophys. Res. Lett., 39, L00F02, doi:10.1029/2012GL054043.

    Google Scholar 

  • Yan, W. Z., Y. Du, H. Wu, D. Liu, and B. I. Wu, 2008: EM scattering from a long dielectric circular cylinder. Prog. Electromagn. Res., 85, 39–67.

    Google Scholar 

  • Yang, P., and K. N. Liou, 1995: Light scattering by hexagonal ice crystals: Comparison of finite-difference time domain and geometric optics methods. J. Opt. Soc. Amer. A., 12, 162–176.

    Google Scholar 

  • Yang, P., and K. N. Liou, 1996a: Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Amer. A., 13, 2072–2085

    Google Scholar 

  • Yang, P., and K. N. Liou, 1996b: Geometric-optics-integralequation method for light scattering by nonspherical ice crystals. Appl. Opt., 35, 6568–6584.

    Google Scholar 

  • Yang, P., and K. N. Liou, 1997: Light scattering by hexagonal ice crystals: Solution by a ray-by-ray integration algorithm. Journal of the Optical Society of America A, 14, 2278–2288.

    Google Scholar 

  • Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contributions to Atmospheric Physics, 71, 223–248.

    Google Scholar 

  • Yang, P., and K. N. Liou, 2000: Finite difference time domain method for light scattering by nonspherical particles. Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mishchenko et al., Eds., Academic Press, 173–221.

    Google Scholar 

  • Yang, P., and K. N. Liou, 2009a: Effective refractive index for determining ray propagation in an absorbing dielectric particle. J. Quant. Spectrosc. Radiat. Transfer, 110, 300–306.

    Google Scholar 

  • Yang, P., and K. N. Liou, 2009b: An “exact” geometric-optics approach for computing the optical properties of large absorbing particles. J. Quant. Spectrosc. Radiat. Transfer, 110, 1162–1177.

    Google Scholar 

  • Yang, P., K. N. Liou, and W. P. Arnott, 1997: Extinction efficiency and single-scattering albedo for laboratory and natural cirrus clouds. J. Geophys. Res., 102, 21 825–21 835.

    Google Scholar 

  • Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105(D4), 4699–4718.

    Google Scholar 

  • Yang, P., and Coauthors, 2001: Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectrometer (MODIS) bands. J. Geophys. Res., 106, 17267–17291.

    Google Scholar 

  • Yang, P., and Coauthors, 2003: Spectral signature of cirrus clouds in the far-infrared region: Single-scattering calculations and radiative sensitivity study. J. Geophys. Res. 108(D18), 4569, doi:10.1029/2002JD2002JD003291.

    Google Scholar 

  • Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near-through far-infrared spectral region. Appl. Opt., 44, 5512–5523.

    Google Scholar 

  • Yang, P., and Coauthors, 2007: Modeling of the scattering and radiative properties of nonspherical dust particles. J. Aerosol Sci., 38, 995–1014.

    Google Scholar 

  • Yang, P., G. W. Kattawar, G. Hong, P. Minnis, and Y.-X. Hu, 2008: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part I. Singlescattering properties of ice crystals with surface roughness. IEEE Trans. Geosci. Remote Sens., 46, 1940–1947.

    Google Scholar 

  • Yang, P., L. Bi, B. A. Baum, K. N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330–347.

    Google Scholar 

  • Yee, S. K., 1966: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14, 302–307.

    Google Scholar 

  • Yi, B., P. Yang, K. N. Liou, P. Minnis, and J. E. Penner, 2012: Simulation of the global contrail radiative forcing: A sensitivity analysis. Geophys. Res. Lett., 39, L00F03, doi:10.1029/2012GL054042.

    Google Scholar 

  • Yi, B., P. Yang, B. A. Baum, T. L’Ecuyer, L. Oreopoulos, E. J. Mlawer, A. J. Heymsfield, and K.-N. Liou, 2013: Influence of ice particle surface roughening on the global cloud radiative effect. J. Atmos. Sci., 70, 2794–2807.

    Google Scholar 

  • Yi, B., X. Huang, P. Yang, B. A. Baum, and G. W. Kattawar, 2014: Considering polarization in MODIS-based cloud property retrievals by using a vector radiative transfer code. J. Quant. Spectrosc. Radiat. Transfer, 146, 540–548.

    Google Scholar 

  • Yue, Q., K. N. Liou, S. C. Ou, B. H. Kahn, P. Yang, and G. Mace, 2007: Interpretation of AIRS data in thin cirrus atmospheres based on a fast radiative transfer model. J. Atmos. Sci. 64, 3827–3842.

    Google Scholar 

  • Yurkin, M. A., and A. G. Hoekstra, 2007: The discrete dipole approximation: An overview and recent developments. J. Quant. Spectrosc. Radiat. Transfer, 106, 558–589.

    Google Scholar 

  • Yurkin, M. A., and A. G. Hoekstra, 2011: The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer, 112, 2234–2247.

    Google Scholar 

  • Yurkin, M. A., A. G. Hoekstra, R. S. Brock, and J. Q. Lu, 2007: Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers. Opt. Express, 15, 17902–17911.

    Google Scholar 

  • Yurkin, M. A., M. Min, and A. G. Hoekstra, 2010: Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived. Phys. Rev. E, 82, 036703.

    Google Scholar 

  • Zhang, H., Q. Chen, and B. Xie, 2015: A new parameterization for ice cloud optical properties used in BCC-RAD and its radiative impact. J. Quant. Spectrosc. Radiat. Transfer, 150, 76–86.

    Google Scholar 

  • Zhou, C., P. Yang, A. E. Dessler, Y. Hu, and B. A. Baum, 2012: Study of horizontally oriented ice crystals with CALIPSO observations and comparison with Monte Carlo radiative transfer simulations. J. Appl. Meteor. Climate, 51, 1426–1439.

    Google Scholar 

  • Zhou, C., P. Yang, A. E. Dessler, and F. Liang, 2013: Statistical properties of horizontally oriented plates in optically thick clouds from satellite observations. IEEE Geoscience and Remote Sensing Lett., 10, 986–990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Liou, KN., Bi, L. et al. On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization. Adv. Atmos. Sci. 32, 32–63 (2015). https://doi.org/10.1007/s00376-014-0011-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-0011-z

Key words

Navigation