Skip to main content
Log in

A comparative study on the dominant factors responsible for the weaker-than-expected El Niño event in 2014

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Anomalous warming occurred in the equatorial central-eastern Pacific in early May 2014, attracting much attention to the possible occurrence of an extreme El Niño event that year because of its similarity to the situation in early 1997. However, the subsequent variation in sea surface temperature anomalies (SSTAs) during summer 2014 in the tropical Pacific was evidently different to that in 1997, but somewhat similar to the situation of the 1990 aborted El Niño event. Based on NCEP (National Centers for Environmental Prediction) oceanic and atmospheric reanalysis data, the physical processes responsible for the strength of El Niño events are examined by comparing the dominant factors in 2014 in terms of the preceding instability of the coupled ocean–atmosphere system and westerly wind bursts (WWBs) with those in 1997 and 1990, separately. Although the unstable ocean–atmosphere system formed over the tropical Pacific in the preceding winter of 2014, the strength of the preceding instability was relatively weak. Weak oceanic eastward-propagating downwelling Kelvin waves were forced by the weak WWBs over the equatorial western Pacific in March 2014, as in February 1990. The consequent positive upper-oceanic heat content anomalies in the spring of 2014 induced only weak positive SSTAs in the central-eastern Pacific–unfavorable for the subsequent generation of summertime WWB sequences. Moreover, the equatorial western Pacific was not cooled, indicating the absence of positive Bjerknes feedback in early summer 2014. Therefore, the development of El Niño was suspended in summer 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Australian Government Bureau of Meteorology, 2014: El Niño remains on hold. [Available online at http://wdev.bom.gov.au/climate/enso/#tabs=Overview.]

    Google Scholar 

  • Behringer, D., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle, Washington, 11–15.

    Google Scholar 

  • Bergman, J. W., H. H. Hendon, and K. M. Weickmann, 2001: Intraseasonal air-sea interactions at the onset of El Niño. J. Climate, 14, 1702–1719.

    Article  Google Scholar 

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial pacific. Mon. Wea. Rev., 97, 163–172.

    Article  Google Scholar 

  • Chiodi, A. M., D. E. Harrison, and G. A. Vecchi, 2014: Subseasonal atmospheric variability and El Niño waveguide warming: Observed effects of the Madden-Julian Oscillation and westerly wind events. J. Climate, 27, 3619–3642.

    Article  Google Scholar 

  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 2190–2196.

    Article  Google Scholar 

  • Cronin, M. F., and M. J. McPhaden, 1997: The upper ocean heat balance in the western equatorial Pacific warm pool during September–December 1992. J. Geophys. Res., 102, 8533–8553.

    Article  Google Scholar 

  • Fasullo, J., and P. J. Webster, 2000: Atmospheric and surface variations during westerly wind bursts in the tropical western Pacific. Quart. J. Roy. Meteor. Soc., 126, 899–924.

    Article  Google Scholar 

  • Fedorov, A. V., S. N. Hu, M. Lengaigne, and E. Guilyardi, 2015: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Climate Dyn., 44, 1381–1401.

    Article  Google Scholar 

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.

    Article  Google Scholar 

  • Hendon, H. H., and M. L. Salby, 1996: Planetary-scale circulations forced by intraseasonal variations of observed convection. J. Atmos. Sci., 53, 1751–1760.

    Article  Google Scholar 

  • Hendon, H. H., and J. Glick, 1997: Intraseasonal air-sea interaction in the tropical Indian and Pacific Oceans. J. Climate, 10, 647–661.

    Article  Google Scholar 

  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829.

    Article  Google Scholar 

  • Jones, C., D. E. Waliser, and C. Gautier, 1998: The influence of the Madden-Julian Oscillation on ocean surface heat fluxes and sea surface temperature. J. Climate, 11, 1057–1072.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kiladis, G. N., G. A. Meehl, and K. M. Weickmann, 1994: Largescale circulation associated with westerly wind bursts and deep convection over the western equatorial Pacific. J. Geophys. Res., 99, 18 527–18 544.

    Article  Google Scholar 

  • Lai, A. W.-C., M. Herzog, and H.-F. Graf, 2015: Two key parameters for the El Niño continuum: Zonal wind anomalies and western Pacific subsurface potential temperature. Climate Dyn., doi: 10.1007/s00382-015-2550-0.

    Google Scholar 

  • Lau, K. M., and P. H. Chan, 1986: The 40–50 day oscillation and the El Niño/Southern Oscillation: A new perspective. Bull. Amer. Meteor. Soc., 67, 533–534.

    Google Scholar 

  • Lau, K.-M., and C.-H. Sui, 1997: Mechanisms of short-term sea surface temperature regulation: Observations during TOGA COARE. J. Climate, 10, 465–472.

    Article  Google Scholar 

  • Lengaigne, M., J.-P. Boulanger, C. Menkes, G. Madec, P. Delecluse, E. Guilyardi, and J. Slingo, 2003: The March 1997 westerly wind event and the onset of the 1997/98 El Niño: Understanding the role of the atmospheric response. J. Climate, 16, 3330–3343.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 Day Oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123.

    Article  Google Scholar 

  • Mao, J., and G. Wu, 2007: Interannual variability in the onset of the summer monsoon over the Eastern Bay of Bengal. Theor. Appl. Climatol., 89, 155–170.

    Article  Google Scholar 

  • Matsumo, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan., 44, 25–43.

    Google Scholar 

  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283, 950–954.

    Article  Google Scholar 

  • Menkes, C. E., M. Lengaigne, J. Vialard, M. Puy, P. Marchesiello, S. Cravatte, and G. Cambon, 2014: About the role of westerly wind events in the possible development of an El Niño in 2014. Geophys. Res. Lett., 41, 6476–6483.

    Article  Google Scholar 

  • National Aeronautics and Space Administration, 2014: Is El Niño developing? [Available online at http://earthobservatory.nasa. gov/IOTD/view.php?id=83653]

    Google Scholar 

  • Philander, S. G. H., 1985: El Niño and La Niña. J. Atmos. Sci., 42, 2652–2662.

    Article  Google Scholar 

  • Reynolds, R. W., T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolutionblended analyses for sea surface temperature. J. Climate, 20, 5473–5496.

    Article  Google Scholar 

  • Sun, D.-Z., 2003: A possible effect of an increase in the warmpool SST on the magnitude of El Niño warming. J. Climate, 16, 185–205.

    Article  Google Scholar 

  • Sun, D.-Z., and Z. Y. Liu, 1996: Dynamic ocean-atmosphere coupling: A thermostat for the tropics. Science, 272, 1148–1150.

    Article  Google Scholar 

  • Sun, J. Z., T. Li, and R. H. Zhang, 2014: The initiation and developing mechanisms of central Pacific El Niños. J. Climate, 27, 4473–4485.

    Article  Google Scholar 

  • Sun, X. G., and X. Q. Yang, 2007: Numerical simulations of the interannual climate responses of East Asia to an El Niño event. Acta. Oceanologica Sinica, 29, 21–30.

    Article  Google Scholar 

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192.

    Article  Google Scholar 

  • Tollefson, J., 2014: El Niño tests forecasters. Nature, 508, 20–21.

    Article  Google Scholar 

  • Toyoda, T., S. Masuda, N. Sugiura, T. Mochizuki, H. Igarashi, M. Kamachi, Y. Ishikawa, and T. Awaji, 2009: A possible role for unstable coupled waves affected by resonance between Kelvin waves and seasonal warming in the development of the strong 1997–1998 El Niño. Deep-Sea Res., 56, 495–512.

    Article  Google Scholar 

  • Vecchi, G. A., and D. E. Harrison, 2000: Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J. Climate, 13, 1814–1830.

    Article  Google Scholar 

  • Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536.

    Article  Google Scholar 

  • Wang, H. J., 2000: The interannual variability of East Asian monsoon and its relationship with SST in a coupled Atmosphere-Ocean-Land climate model. Adv. Atmos. Sci., 17, 31–47.

    Article  Google Scholar 

  • Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 451–14 510.

    Article  Google Scholar 

  • Wyrtki, K., 1975: El Niño-The dynamic response of the equatorial Pacific ocean atmospheric forcing. J. Phys. Oceanogr., 5, 572–584.

    Article  Google Scholar 

  • Wyrtki, K., 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res., 90, 7129–7132.

    Article  Google Scholar 

  • Xie, S.-P., A. Kubokawa, and K. Hanawa, 1993: Evaporation-wind feedback and the organizing of tropaical convection on the planetary scale. Part I: Quasi-linear instability. J. Atmos. Sci., 50, 3873–3883.

    Google Scholar 

  • Xue, Y., and Coauthors, 2012: A comparative analysis of upperocean heat content variability from an ensemble of operational ocean reanalyses. J. Climate, 25, 6905–6929.

    Article  Google Scholar 

  • Yang, S., 1996: ENSO-snow-monsoon associations and seasonalinterannual predictions. Int. J. Climatol., 16, 125–134.

    Article  Google Scholar 

  • Zastrow, M., 2014: Stalled El Niño poised to resurge. Nature, 513, 15.

    Article  Google Scholar 

  • Zhang, C. D., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden-Julian Oscillation in the equatorial Pacific. J. Climate, 15, 2429–2445.

    Article  Google Scholar 

  • Zheng, F., J. Zhu, H. Wang, and R.-H. Zhang, 2009: Ensemble hindcasts of ENSO events over the past 120 years using a large number of ensembles. Adv. Atmos. Sci., 26, 359–372, doi: 10.1007/s00376-009-0359-7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangyu Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, B., Li, J. et al. A comparative study on the dominant factors responsible for the weaker-than-expected El Niño event in 2014. Adv. Atmos. Sci. 32, 1381–1390 (2015). https://doi.org/10.1007/s00376-015-4269-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-4269-6

Key words

Navigation