Skip to main content
Log in

Performance of RegCM4 over major river basins in China

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A long-term simulation for the period 1990–2010 is conducted with the latest version of the International Centre for Theoretical Physics’ Regional Climate Model (RegCM4), driven by ERA-Interim boundary conditions at a grid spacing of 25 km. The Community Land Model (CLM) is used to describe land surface processes, with updates in the surface parameters, including the land cover and surface emissivity. The simulation is compared against observations to evaluate the model performance in reproducing the present day climatology and interannual variability over the 10 main river basins in China, with focus on surface air temperature and precipitation. Temperature and precipitation from the ERA-Interim reanalysis are also considered in the model assessment. Results show that the model reproduces the present day climatology over China and its main river basins, with better performances in June–July–August compared to December–January–February (DJF). In DJF, we find a warm bias at high latitudes, underestimated precipitation in the south, and overestimated precipitation in the north. The model in general captures the observed interannual variability, with greater skill for temperature. We also find an underestimation of heavy precipitation events in eastern China, and an underestimation of consecutive dry days in northern China and the Tibetan Plateau. Similar biases for both mean climatology and extremes are found in the ERA-Interim reanalysis, indicating the difficulties for climate models in simulating extreme monsoon climate events over East Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  • Adam, J. C., and D. P. Lettenmaier, 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi: 10.1029/2002JD002499.

    Article  Google Scholar 

  • Chen, H. P., and J. Q. Sun, 2015: Assessing model performance of climate extremes in China: An intercomparison between CMIP5 and CMIP3. Climatic Change, 129(1–2), 197–211.

    Article  Google Scholar 

  • Chen, Y., X. Y. Chen, and G. Y. Ren, 2011: Variation of extreme precipitation over large river basins in China. Advances in Climate Change Research, 2, 108–114. (in Chinese)

    Article  Google Scholar 

  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313–2335.

    Article  Google Scholar 

  • Frich, P., L. V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19, 193–212, doi: 10.3354/cr019193.

    Article  Google Scholar 

  • Fu, C. B., and H. L. Yuan, 2001: An virtual numerical experiment to understand the impacts of recovering natural vegetation on the summer climate and environmental conditions in East Asia. Chinese Science Bulletin, 46, 1199–1203.

    Article  Google Scholar 

  • Gao, D. Y., H. Zou, and W. Wang, 1985: Influence of water vapor pass along the Yarlungzangbo River on precipitation. Mountain Research, 3, 239–249. (in Chinese)

    Google Scholar 

  • Gao, X. J., Z. C. Zhao, Y. H. Ding, R. H. Huang, and F. Giorgi, 2001: Climate change due to greenhouse effects in China as simulated by a regional climate model. Adv. Atmos. Sci., 18, 1224–1230, doi: 10.1007/s00376-001-0036-y.

    Article  Google Scholar 

  • Gao, X. J., Y. Xu, Z. C. Zhao, J. S. Pal, and F. Giorgi, 2006: On the role of resolution and topography in the simulation of East Asia precipitation. Theor. Appl. Climatol., 86, 173–185.

    Article  Google Scholar 

  • Gao, X. J., M. L. Wang, and F. Giorgi, 2013: Climate change over China in the 21st century as simulated by BCC CSM1. 1-RegCM4.0. Atmos. Oceanic Sci. Lett., 6, 381–386.

    Article  Google Scholar 

  • Gao, X. J., Y. Shi, and F. Giorgi, 2016: Comparison of convective parameterizations in RegCM4 experiments with CLM as the land surface model over China. Atmos. Oceanic Sci. Lett., 9, 246–254, doi: 10.1080/16742834.2016.1172938

    Article  Google Scholar 

  • Giorgi, F., 2002: Dependence of the surface climate interannual variability on spatial scale. Geophy. Res. Lett., 29, 16-1–16-4.

    Article  Google Scholar 

  • Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993a: Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121, 2794–2813.

    Article  Google Scholar 

  • Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993b: Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 2814–2832.

    Article  Google Scholar 

  • Giorgi, F., Y. Huang, K. Nishizawa, and C. B. Fu, 1999: A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. J. Geophys. Res., 104, 6403–6423.

    Article  Google Scholar 

  • Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bulletin, 58, 175–183.

    Google Scholar 

  • Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Research, 52, 7–29.

    Article  Google Scholar 

  • Han, Z. Y., X. J. Gao, Y. Shi, J. Wu, M. L. Wang, and F. Giorgi, 2015: Development of Chinese high resolution land cover data for the RegCM4/CLM and its impact on regional climate simulation. Journal of Glaciology and Geocryology, 37, 857–866. (in Chinese)

    Google Scholar 

  • Holtslag, A. A. M., E. I. F. De Bruijn, and H. L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 1561–1575.

    Article  Google Scholar 

  • Hou, H. Y., 1981: A further discussion on the principle and scheme for vegetation regionalization of China. Acta Phytoecologia et Geobotanica Sinica, 5, 290–301. (in Chinese)

    Google Scholar 

  • Huang, A. N., and Y. C. Zhang, 2007: Impacts of the BATS1e land surface model on the performance of the p-σ regional climate model. Chinese Journal of Atmospheric Sciences, 31, 155–166. (in Chinese)

    Google Scholar 

  • Huang, B., S. Polanski, and U. Cubasch, 2015: Assessment of precipitation climatology in an ensemble of CORDEX-East Asia regional climate simulations. Climate Research, 64, 141–158.

    Article  Google Scholar 

  • Ji, Z. M., and S. C. Kang, 2013: Projection of snow cover changes over China under RCP scenarios. Climate Dyn., 41, 589–600.

    Article  Google Scholar 

  • Jiang, D. B., H. J. Wang, and X. M. Lang, 2005: Evaluation of East Asian climatology as simulated by seven coupled models. Adv. Atmos. Sci., 22, 479–495, doi: 10.1007/BF02918482.

    Article  Google Scholar 

  • Jiang, D. B., Z. P. Tian, and X. M. Lang, 2016: Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports. Int. J. Climatol., 36, 1114–1133, doi: 10.1002/joc.4406.

    Article  Google Scholar 

  • Ju, L. X., and H. J. Wang, 2006: Modern climate over East Asia simulated by a regional climate model nested in a global gridpoint general circulation model. Chinese Journal of Geophysics, 49, 52–60. (in Chinese)

    Article  Google Scholar 

  • Juneng, L., and Coauthors, 2016: Sensitivity of Southeast Asia rainfall simulations to cumulus and air-sea flux parameterizations in RegCM4. Climate Research, 69, 59–77.

    Article  Google Scholar 

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The national center for atmospheric research community climate model: CCM3. J. Climate, 11, 1131–1149.

    Article  Google Scholar 

  • Li, T., and G. Q. Zhou, 2010: Preliminary results of a regional airsea coupled model over East Asia. Chinese Science Bulletin, 55, 2295–2305.

    Article  Google Scholar 

  • Liu, Y. Q., F. Giorgi, and W. M. Washington, 1994: Simulation of summer monsoon climate over East Asia with an NCAR regional climate model. Mon. Wea. Rev., 122, 2331–2348.

    Article  Google Scholar 

  • Liu, Y. Q., A. Mamitimin, W. Huo, X. H. Yang, X. C. Liu, and Q. He, 2014: Characteristics of land surface emissivity on distribution and variation in Taklimakan Desert. Desert and Oasis Meteorology, 8, 1–7. (in Chinese)

    Google Scholar 

  • Luo, Y., Z. C. Zhao, and Y. H. Ding, 2002: Ability of NCAR RegCM2 in reproducing the dominant physical processes during the anomalous rainfall episodes in the summer of 1991 over the Yangtze-Huaihe valley. Adv. Atmos. Sci., 19, 236–254, doi: 10.1007/s00376-002-0019-7.

    Article  Google Scholar 

  • MWRC (The Ministry of Water Resources of China), 1981: Preliminary assessments of water resources in China. The Ministry of Water Resources of China, 191 pp. (in Chinese)

    Google Scholar 

  • NCAR, 2016: The NCAR command language. UCAR/NCAR/CISL/TDD, Boulder, Colorado.

    Google Scholar 

  • Oh, S. G., J. H. Park, S. H. Lee, and M. S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res., 119, 2913–2927.

    Article  Google Scholar 

  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021.

    Article  Google Scholar 

  • Pal, J. S., E. E. Small, and E. A. B. Eltahir, 2000: Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res., 105, 29579–29594.

    Article  Google Scholar 

  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 1395–1409.

    Article  Google Scholar 

  • Prabhakara, C., and G. Dalu, 1976: Remote sensing of the surface emissivity at 9 μm over the globe. J. Geophys. Res., 81, 3719–3724.

    Article  Google Scholar 

  • Qian, Y., and L. Leung, 2007: A long-term regional simulation and observations of the hydroclimate in China. J. Geophys. Res., 112, D14104.

    Article  Google Scholar 

  • Shi, Y., X. J. Gao, J. Wu, and F. Giorgi, 2011: Changes in snow cover over China in the 21st century as simulated by a high resolution regional climate model. Environ. Res. Lett., 6, 045401.

    Article  Google Scholar 

  • Sun, Q. H., C. Y. Miao, Q. Y. Duan, D. X. Kong, A. Z. Ye, Z. H. Di, and W. Gong, 2014: Would the “real” observed dataset stand up? A critical examination of eight observed gridded climate datasets for China. Environ. Res. Lett., 9, 015001.

    Article  Google Scholar 

  • Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian Summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

    Google Scholar 

  • Uppala, S. M., D. Dee, S. Kobayashi, P. Berrisford, and A. Simmons, 2008: Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, 115, 12–18.

    Google Scholar 

  • Wang, X. J., M. X. Yang, and G. J. Pang, 2014: Sensitivity of regional climate simulations to land-surface schemes on the Tibetan Plateau. Climate Research, 62, 25–43.

    Article  Google Scholar 

  • Wang, Y. Q., O. L. Sen, and B. Wang, 2003: A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 Severe Precipitation Event over China. I: Model description and verification of simulation. J. Climate, 16, 1721–1738.

    Article  Google Scholar 

  • Wu, J., 2012: Regional climate change simulations and uncertainty analysis over CORDEX-East Asia region. PhD dissertation, Chinese Academy of Sciences & Chinese Academy of Meteorological Sciences, 126 pp. (in Chinese)

    Google Scholar 

  • Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese Journal of Geophysics, 56, 1102–1111. (in Chinese).

    Google Scholar 

  • Wu, J., X. J. Gao, F. Giorgi, Z. H. Chen, and D. F. Yu, 2012: Climate effects of the Three Gorges Reservoir as simulated by a high resolution double nested regional climate model. Quaternary International, 282, 27–36.

    Article  Google Scholar 

  • Xu, Y. L., Y. Zhang, E. D. Lin, W. T. Lin, W. J. Dong, R. Jones, D. Hassell, and S. Wilson, 2006: Analyses on the climate change responses over China under SRES B2 scenario using PRECIS. Chinese Science Bulletin, 51, 2260–2267. (in Chinese)

    Article  Google Scholar 

  • Xu, Y., X. J. Gao, Y. Shen, C. H. Xu, Y. Shi, and F. Giorgi, 2009: A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci., 26, 763–772, doi: 10.1007/s00376-009-9029-z.

    Article  Google Scholar 

  • Xu, Y., X. J. Gao, and F. Giorgi, 2010: Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections. Climate Research, 41, 61–81.

    Article  Google Scholar 

  • Yu, E. T., H. J. Wang, and J. Q. Sun, 2010: A quick report on a dynamical downscaling simulation over China using the nested model. Atmos. Oceanic Sci. Lett., 3, 325–329.

    Article  Google Scholar 

  • Yu, E. T., J. Q. Sun, H. P. Chen, and W. L. Xiang, 2015: Evaluation of a high-resolution historical simulation over China: Climatology and extremes. Climate Dyn., 45, 2013–2031, doi: 10.1007/s00382-014-2452-6.

    Article  Google Scholar 

  • Zhang, D. F., X. J. Gao, L. C. Ouyang, and W. J. Dong, 2008: Simulation of present climate over East Asia by a regional climate model. Journal of Tropical Meteorology, 14, 19–23.

    Google Scholar 

  • Zhang, D. F., X. J. Gao, Y. Luo, J. Xia, and F. Giorgi, 2015: Downscaling a 20th century climate change of a global model for China from RegCM4.0: Attributable contributions of greenhouse gas emissions and natural climate variability. Chinese Science Bulletin, 60, 1631–1642. (in Chinese)

    Article  Google Scholar 

  • Zhang, X. B., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2, 851–870, doi: 10.1002/wcc.147.

    Google Scholar 

  • Zhang, X. S., 2007: Vegetation Map of the People’s Republic of China (1: 1000000). The Geological Publishing House, Beijing. (in Chinese)

    Google Scholar 

  • Zou, J., Z. H. Xie, Y. Yu, C. S. Zhan, and Q. Sun, 2014a: Climatic responses to anthropogenic groundwater exploitation: A case study of the Haihe River Basin, Northern China. Climate Dyn., 42, 2125–2145.

    Article  Google Scholar 

  • Zou, L. W., and T. J. Zhou, 2013: Near future (2016-40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM. Adv. Atmos. Sci., 30, 806–818, doi: 10.1007/s00376-013-2209-x.

    Article  Google Scholar 

  • Zou, L. W., Y. Qian, T. J. Zhou, and B. Yang, 2014b: Parameter tuning and calibration of RegCM3 with MIT-Emanuel cumulus parameterization scheme over CORDEX East Asia domain. J. Climate, 27, 7687–7701.

    Article  Google Scholar 

  • Zou, L. W., T. J. Zhou, and D. D. Peng, 2016: Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations. J. Geophys. Res., 121, 1442–1458, doi: 10.1002/2015JD023912.

    Google Scholar 

  • Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336–351.

    Article  Google Scholar 

Download references

Acknowledgements

This study was jointly supported by the National Key Research and Development Program of China (Grant No. 2016YFA0600704), the National Natural Science Foundation (Grant No. 41375104), and the Climate Change Specific Fund of China (Grant Nos. CCSF201626 and CCSF201509). We thank the two anonymous reviewers for their useful comments, which helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejie Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Shi, Y., Han, Z. et al. Performance of RegCM4 over major river basins in China. Adv. Atmos. Sci. 34, 441–455 (2017). https://doi.org/10.1007/s00376-016-6179-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-6179-7

Key words

Navigation