Skip to main content

Advertisement

Log in

Rapamycin has a beneficial effect on controlling epilepsy in children with tuberous sclerosis complex: results of 7 children from a cohort of 86

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Tuberous sclerosis complex (TSC) is a genetic disorder characterized by the formation of hamartomas in various organ systems. We would like share our experience from 86 patients and the results of rapamycin treatment in seven children with TSC.

Methods

Eighty-six children with TSC were enrolled into this retrospective study. The clinical features of seven children treated with oral rapamycin were presented in detail.

Results

The most common complaint of administration was convulsion in 77 children (89.5 %). Hypopigmented skin lesions, adenoma sebaceum, resistant epilepsy, intracardiac mass, renal angiomyolipomas, and West syndrome were detected (n = 83, 96.5 %; n = 47, 54.7 %; n = 36, 41.9 %; n = 27, 31.4 %; n = 18, 20.9 %; and n = 13, 15.1 %, respectively). Subependymal nodules were the most frequent finding in cranial imaging followed by cortical tubers and subependymal giant cell astrocytomas (n = 75, 87.2 %; n = 71, 82.6 %; and n = 8, 9.3 %, respectively). Of the seven patients treated with rapamycin, the lesions of six children with facial adenoma sebaceum showed regression in various degrees. The frequency of convulsions decreased in five patients with resistant epilepsy within the first 6 months of the treatment, and complete control of convulsion for all patients was achieved in the second 6 months.

Conclusion

This is the first study that showed that rapamycin is an effective agent for controlling epilepsy without any significant side effect in children with TSC. Rapamycin seems to be effective after 6 months of therapy, and we recommend tapering the dosage after successful management of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jansen FE, van Nieuwenhuizen O, van Huffelen AC (2004) Tuberous sclerosis complex and its founders. J Neurol Neurosurg Psychiatry 75:770

    Article  CAS  PubMed  Google Scholar 

  2. Baskin HJ Jr (2008) The pathogenesis and imaging of the tuberous sclerosis complex. Pediatr Radiol 38:936–952

    Article  PubMed  Google Scholar 

  3. Curatolo P, Bombardieri R, Jozwiak S (2008) Tuberous sclerosis. Lancet 372:657–668

    Article  CAS  PubMed  Google Scholar 

  4. Roach ES, Gomez MR, Northrup H (1998) Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol 13:624–628

    Article  CAS  PubMed  Google Scholar 

  5. Hyman MH, Whittemore VH (2000) National Institutes of Health consensus conference: tuberous sclerosis complex. Arch Neurol 57:662–665

    Article  CAS  PubMed  Google Scholar 

  6. Roach ES, Sparagana SP (2004) Diagnosis of tuberous sclerosis complex. J Child Neurol 19:643–649

    PubMed  Google Scholar 

  7. Au KS, Williams AT, Roach ES et al (2007) Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med 9:88–100

    Article  CAS  PubMed  Google Scholar 

  8. Chu-Shore CJ, Major P, Camposano S, Muzykewicz D, Thiele EA (2010) The natural history of epilepsy in tuberous sclerosis complex. Epilepsia 51:1236–1241

    Article  PubMed Central  PubMed  Google Scholar 

  9. European Chromosome 16 Tuberous Sclerosis Consortium (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–1315

    Article  Google Scholar 

  10. van Slegtenhorst M, de Hoogt R, Hermans C et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–808

    Article  PubMed  Google Scholar 

  11. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5:578–581

    Article  CAS  PubMed  Google Scholar 

  12. Gong R, Park CS, Abbassi NR, Tang SJ (2006) Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons. J Biol Chem 281:18802–18815

    Article  CAS  PubMed  Google Scholar 

  13. Raab-Graham KF, Haddick PC, Jan YN, Jan LY (2006) Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science 314:144–148

    Article  CAS  PubMed  Google Scholar 

  14. Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ, Sabatini BL (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci 8:1727–1734

    Article  CAS  PubMed  Google Scholar 

  15. Inoki K, Guan KL (2006) Complexity of the TOR signaling network. Trends Cell Biol 16:206–212

    Article  CAS  PubMed  Google Scholar 

  16. Franz DN, Bissler JJ, McCormack FX (2010) Tuberous sclerosis complex: neurological, renal and pulmonary manifestations. Neuropediatrics 41:199–208

    Article  CAS  PubMed  Google Scholar 

  17. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356

    Article  CAS  PubMed  Google Scholar 

  18. Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28:721–726

    Article  CAS  Google Scholar 

  19. Augustine JJ, Bodziak KA, Hricik DE (2007) Use of sirolimus in solid organ transplantation. Drugs 67:369–391

    Article  CAS  PubMed  Google Scholar 

  20. Herry I, Neukirch C, Debray MP, Mignon F, Crestani B (2007) Dramatic effect of sirolimus on renal angiomyolipomas in a patient with tuberous sclerosis complex. Eur J Intern Med 18:76–77

    Article  PubMed  Google Scholar 

  21. Franz DN, Leonard J, Tudor C et al (2006) Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 59:490–498

    Article  CAS  PubMed  Google Scholar 

  22. Hofbauer GF, Marcollo-Pini A, Corsenca A et al (2008) The mTOR inhibitor rapamycin significantly improves facial angiofibroma lesions in a patient with tuberous sclerosis. Br J Dermatol 159:473–475

    Article  CAS  PubMed  Google Scholar 

  23. Micozkadioglu H, Koc Z, Ozelsancak R, Yildiz I (2010) Rapamycin therapy for renal, brain, and skin lesions in a tuberous sclerosis patient. Ren Fail 32:1233–1236

    Article  PubMed  Google Scholar 

  24. Zeng LH, Rensing NR, Wong M (2009) The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 29:6964–6972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zeng LH, Xu L, Gutmann DH, Wong M (2008) Rapamycin prevents epilepsy in a Mouse model of tuberous sclerosis complex. Ann Neurol 63:444–453

    Article  CAS  PubMed  Google Scholar 

  26. Muncy J, Butler IJ, Koenig MK (2009) Rapamycin reduces seizure frequency in tuberous sclerosis complex. J Child Neurol 24:477

    Article  PubMed Central  PubMed  Google Scholar 

  27. Ekici MA, Kumandas S, Per H et al (2011) Surgical timing of the subependymal giant cell astrocytoma (SEGA) with the patients of tuberous sclerosis complex. Turk Neurosurg 21:315–324

    PubMed  Google Scholar 

  28. Bolton PF, Park RJ, Higgins JN, Griffiths PD, Pickles A (2002) Neuro-epileptic determinants of autism spectrum disorders in tuberous sclerosis complex. Brain 125:1247–1255

    Article  PubMed  Google Scholar 

  29. Joinson C, O’Callaghan FJ, Osborne JP, Martyn C, Harris T, Bolton PF (2003) Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol Med 33:335–344

    Article  CAS  PubMed  Google Scholar 

  30. Jozwiak S, Goodman M, Lamm SH (1998) Poor mental development in patients with tuberous sclerosis complex: clinical risk factors. Arch Neurol 55:379–384

    Article  CAS  PubMed  Google Scholar 

  31. Goh S, Kwiatkowski DJ, Dorer DJ, Thiele EA (2005) Infantile spasms and intellectual outcomes in children with tuberous sclerosis complex. Neurology 65:235–238

    Article  PubMed  Google Scholar 

  32. Jambaque I, Chiron C, Dumas C, Mumford J, Dulac O (2000) Mental and behavioural outcome of infantile epilepsy treated by vigabatrin in tuberous sclerosis patients. Epilepsy Res 38:151–160

    Article  CAS  PubMed  Google Scholar 

  33. Chou IJ, Lin KL, Wong AM et al (2008) Neuroimaging correlation with neurological severity in tuberous sclerosis complex. Eur J Paediatr Neurol 12:108–112

    Article  PubMed  Google Scholar 

  34. Inoue Y, Nemoto Y, Murata R et al (1988) CT and MR imaging of cerebral tuberous sclerosis. Brain Dev 20:209–221

    Article  Google Scholar 

  35. Luat AF, Makki M, Chugani HT (2007) Neuroimaging in tuberous sclerosis complex. Curr Opin Neurol 20:142–150

    Article  CAS  PubMed  Google Scholar 

  36. Michelozzi C, Di Leo G, Galli F et al (2013) Subependymal nodules and giant cell tumours in tuberous sclerosis complex patients: prevalence on MRI in relation to gene mutation. Childs Nerv Syst 29:249–254

    Article  PubMed  Google Scholar 

  37. Nabbout R, Santos M, Rolland Y, Delalande O, Dulac O, Chiron C (1999) Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis. J Neurol Neurosurg Psychiatry 66:370–375

    Article  CAS  PubMed  Google Scholar 

  38. Rüegg S, Baybis M, Juul H, Dichter M, Crino PB (2007) Effects of rapamycin on gene expression, morphology, and electrophysiological properties of rat hippocampal neurons. Epilepsy Res 77:85–92

    Article  PubMed Central  PubMed  Google Scholar 

  39. Cuccia V, Zuccaro G, Sosa F, Monges J, Lubienieky F, Taratuto AL (2003) Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv Syst 19:232–243

    PubMed  Google Scholar 

  40. Bissler JJ, McCormack FX, Young LR et al (2008) Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358:140–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Atalay S, Aypar E, Uçar T et al (2010) Fetal and neonatal cardiac rhabdomyomas: clinical presentation, outcome and association with tuberous sclerosis complex. Turk J Pediatr 52:481–487

    PubMed  Google Scholar 

  42. Thiele E (2004) Managing epilepsy in tuberous sclerosis complex. J Child Neurol 19:680–686

    PubMed  Google Scholar 

  43. Levine NB, Collins J, Franz DN, Crone KR (2006) Gradual formation of an operative corridor by balloon dilation for resection of subependymal giant cell astrocytomas in children with tuberous sclerosis: specialized minimal access technique of balloon dilation. Minim Invasive Neurosurg 49:317–320

    Article  CAS  PubMed  Google Scholar 

  44. Manuchehri K, Goodman S, Siviter L, Nightingale S (2008) A controlled study of vigabatrin and visual abnormalities. Br J Ophthalmol 84:499–505

    Article  Google Scholar 

  45. Lawden MC, Eke T, Degg C, Harding GF, Wild JM (1999) Visual field defects associated with vigabatrin therapy. J Neurol Neurosurg Psychiatry 67:716–722

    Article  CAS  PubMed  Google Scholar 

  46. Buoni S, Zannolli R, Strambi M, Fois A (2004) Combined treatment with vigabatrin and topiramate in West syndrome. J Child Neurol 19:385–386

    Article  PubMed  Google Scholar 

  47. Raffo E, Coppola A, Ono T, Briggs SW, Galanopoulou AS (2011) A pulse rapamycin therapy for infantile spasms and associated cognitive decline. Neurobiol Dis 43:322–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kossoff EH, Thiele EA, Pfeifer HH, McGrogan JR, Freeman JM (2005) Tuberous sclerosis complex and the ketogenic diet. Epilepsia 46:1684–1686

    Article  PubMed  Google Scholar 

  49. Wong M (2011) Rapamycin for treatment of epilepsy: antiseizure, antiepileptogenic, both, or neither? Epilepsy Curr 11:66–68

    Article  PubMed Central  PubMed  Google Scholar 

  50. Buckmaster PS, Ingram EA, Wen X (2009) Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J Neurosci 29:8259–8269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sliwa A, Plucinska G, Bednarczyk J, Lukasiuk K (2012) Post-treatment with rapamycin does not prevent epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy. Neurosci Lett 509:105–109

    Article  CAS  PubMed  Google Scholar 

  52. Galanopoulou AS, Buckmaster PS, Staley KJ et al (2012) American Epilepsy Society Basic Science Committee and The International League Against Epilepsy Working Group on Recommendations for Preclinical Epilepsy Drug Discovery. Identification of new epilepsy treatments: issues in preclinical methodology. Epilepsia 53:571–582

    Article  PubMed Central  PubMed  Google Scholar 

  53. Ljungberg MC, Sunnen CN, Lugo JN, Anderson AE, D’Arcangelo G (2009) Rapamycin suppresses seizures and neuronal hypertrophy in a mouse model of cortical dysplasia. Dis Model Mech 2:389–398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Zhou J, Blundell J, Ogawa S et al (2009) Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J Neurosci 29:1773–1783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Huang X, Zhang H, Yang J et al (2010) Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol Dis 40:193–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Galanopoulou AS, Gorter JA, Cepeda C (2012) Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia 53:1119–1130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Terashima A, Nakai M, Hashimoto T et al (1998) Single-channel activity of the Ca2+-dependent K+ channel is modulated by FK506 and rapamycin. Brain Res 786:255–258

    Article  CAS  PubMed  Google Scholar 

  58. Wang Y, Barbaro MF, Baraban SC (2006) A role for the mTOR pathway in surface expression of AMPA receptors. Neurosci Lett 401:35–39

    Article  CAS  PubMed  Google Scholar 

  59. Ruan B, Pong K, Jow F et al (2008) Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Proc Natl Acad Sci USA 105:33–38

    Article  CAS  PubMed  Google Scholar 

  60. Daoud D, Scheld HH, Speckmann EJ, Gorji A (2007) Rapamycin: brain excitability studied in vitro. Epilepsia 48:834–836

    Article  CAS  PubMed  Google Scholar 

  61. Cepeda C, Andre VM, Hauptman JS et al (2012) Enhanced GABAergic network and receptor function in pediatric cortical dysplasia Type IIB compared with Tuberous Sclerosis Complex. Neurobiol Dis 45:310–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Wong M (2010) Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: from tuberous sclerosis to common acquired epilepsies. Epilepsia 51:27–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Wong M (2011) Mammalian target of rapamycin (mTOR) activation in focal cortical dysplasia and related focal cortical malformations. Exp Neurol 244:22–26

    Google Scholar 

  64. Krueger DA, Care MM, Holland K et al (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811

    Article  CAS  PubMed  Google Scholar 

  65. Rosser T, Panigrahy A, McClintock W (2006) The diverse clinical manifestations of tuberous sclerosis complex: a review. Semin Pediatr Neurol 13:27–36

    Article  PubMed  Google Scholar 

  66. Prather P, de Vries PJ (2004) Behavioral and cognitive aspects of tuberous sclerosis complex. J Child Neurol 19:666–674

    PubMed  Google Scholar 

  67. McCullough DL, Scott R Jr, Seybold HM (1971) Renal angiomyolipoma (hamartoma): review of the literature and report of 7 cases. J Urol 105:32–44

    CAS  PubMed  Google Scholar 

  68. Stillwell TJ, Gomez MR, Kelalis PP (1987) Renal lesions in tuberous sclerosis. J Urol 138:477–481

    CAS  PubMed  Google Scholar 

  69. Steiner MS, Goldman SM, Fishman EK, Marshall FF (1993) The natural history of renal angiomyolipoma. J Urol 150:1782–1786

    CAS  PubMed  Google Scholar 

  70. Casper KA, Donnelly LF, Chen B, Bissler JJ (2002) Tuberous sclerosis complex: renal imaging findings. Radiology 225:451–456

    Article  PubMed  Google Scholar 

  71. Cabrera Lopez C, Marti T, Catala V et al (2011) Effects of rapamycin on angiomyolipomas in patients with tuberous sclerosis. Nefrologia 31:292–298

    PubMed  Google Scholar 

  72. Truchuelo T, Díaz-Ley B, Ríos L, Alcántara J, Jaén P (2012) Facial angiofibromas treated with topical rapamycin: an excellent choice with fast response. Dermatol Online J 18:15

    PubMed  Google Scholar 

  73. Rauktys A, Lee N, Lee L, Dabora SL (2008) Topical rapamycin inhibits tuberous sclerosis tumor growth in a nude mouse model. BMC Dermatol 8:1

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huseyin Per or Ekrem Unal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canpolat, M., Per, H., Gumus, H. et al. Rapamycin has a beneficial effect on controlling epilepsy in children with tuberous sclerosis complex: results of 7 children from a cohort of 86. Childs Nerv Syst 30, 227–240 (2014). https://doi.org/10.1007/s00381-013-2185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-013-2185-6

Keywords

Navigation