Skip to main content

Advertisement

Log in

EC-Earth V2.2: description and validation of a new seamless earth system prediction model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

EC-Earth, a new Earth system model based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF), is presented. The performance of version 2.2 (V2.2) of the model is compared to observations, reanalysis data and other coupled atmosphere–ocean-sea ice models. The large-scale physical characteristics of the atmosphere, ocean and sea ice are well simulated. When compared to other coupled models with similar complexity, the model performs well in simulating tropospheric fields and dynamic variables, and performs less in simulating surface temperature and fluxes. The surface temperatures are too cold, with the exception of the Southern Ocean region and parts of the Northern Hemisphere extratropics. The main patterns of interannual climate variability are well represented. Experiments with enhanced CO2 concentrations show well-known responses of Arctic amplification, land-sea contrasts, tropospheric warming and stratospheric cooling. The global climate sensitivity of the current version of EC-Earth is slightly less than 1 K/(W m−2). An intensification of the hydrological cycle is found and strong regional changes in precipitation, affecting monsoon characteristics. The results show that a coupled model based on an operational seasonal prediction system can be used for climate studies, supporting emerging seamless prediction strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Balsamo G, Viterbo P, Beljaars A, van den Hurk B, Hirschi M, Betts AK, Scipal K (2009) A revised hydrology for the ECMWF model: verification from field site to terrestrial water storage and impact in the integrated forecast system. J Hydrometeor 10:623–643

    Article  Google Scholar 

  • Bechtold P, Köhler M, Jung T, Leutbecher M, Rodwell M, Vitart F, Balsamo G (2008) Advances in predicting atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Quart J Roy Meteor Soc 134:1337–1351

    Article  Google Scholar 

  • Belchansky GI, Douglas DC, Platonov NG (2008) Fluctuating Arctic sea ice thickness changes estimated by an in situ learned and empirically forced neural network model. J Clim 21:716–729

    Article  Google Scholar 

  • Bintanja R, Graversen RG, Hazeleger W (2011) Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nature Geoscience doi: 10.1038/NGEO1285

  • Conkright ME, Locarnini RA, Garcia HE, O’Brien TD, Boyer TP, Stephens C, Antonov JI (2002) World Ocean Atlas 2001: objective analyses, data statistics, and figures, CD-ROM documentation. National Oceanographic Data Center, Silver Spring 17 pp

    Google Scholar 

  • Cunningham S, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth H, Grant E, Hirschi J, Beal L, Meinen CS, Bryden H (2007) Temporal variability of the Atlantic meridional overturning circulation at 25°N. Science 317:935–938

    Article  Google Scholar 

  • Dee D et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Met Soc 137:535–597

    Article  Google Scholar 

  • Delecluse P, Madec G (2000) Ocean modelling and the role of the ocean in the climate system. In: Holland WR, Joussaume S, David F (eds) Modeling the earth’s climate and its variability, Les Houches, Session, LXVII 1997. Elsevier Science, London, pp 237–313

    Google Scholar 

  • Dutra E, Balsamo G, Viterbo P, Miranda PMA, Beljaars A, Schär C, Elder K (2010) An improved snow scheme for the ECMWF land surface model: description and offline validation. J Hydrometeorol doi: 10.1175/2010JHM1249.1

  • Fan Y, van den Dool H (2008) A global monthly land surface air temperature analysis for 1948-present. J Geophys Res 113:D01103. doi:10.1029/2007JD008470

    Article  Google Scholar 

  • Fasullo JT, Trenberth KE (2008) The annual cycle of the energy budget. Part II: meridional structures and poleward transports. J Climate 21:2313–2325

    Article  Google Scholar 

  • Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646

    Article  Google Scholar 

  • Gaspar P, Gregoris Y, Lefevre JM (1990) A simple eddy kinetic energy model for simulations of the oceanic vertical mixing. Tests at station Papa and long-term upper ocean study site. J Geophys Res 95:16179–16193

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Gregory J et al (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205. doi:10.1029/2003GL018747

    Article  Google Scholar 

  • Haarsma RJ, Selten FM, van den Hurk BJJM, Hazeleger W, Wang X (2009) Drier mediterranean soils due to greenhouse warming bring easterly winds over summertime Central Europe. Geophys Res Lett 36:L04705. doi:10.1029/2008GL036617

    Article  Google Scholar 

  • Hazeleger W, Haarsma RJ (2005) Sensitivity of tropical Atlantic climate to mixing in a coupled ocean-atmosphere model. Clim Dyn 25:387–399

    Article  Google Scholar 

  • Hazeleger W et al (2010) EC-Earth: a seamless earth-system prediction approach in action. Bull Amer Meteor Soc 91:1357–1363. doi:10.1175/2010BAMS2877.1

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    Article  Google Scholar 

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232

    Article  Google Scholar 

  • Huijnen V et al (2010) The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0. Geosci Model Dev 3:445–473

    Article  Google Scholar 

  • Hurrell J, et al. (2003) The North Atlantic oscillation: climate significance and environmental impact, geophysical monograph 134, American Geophysical Union

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual Model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Joshi MM, Gregory JM, Webb MJ, Sexton DMH, Johns TC (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 30:455–465

    Article  Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589

    Article  Google Scholar 

  • Kiehl JT, Trenberth KE (1997) Earths annual global mean energy budget. Bull Amer Meteor Soc 78:197–208

    Article  Google Scholar 

  • Knutti R, Hegerl GC (2008) The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat Geosci 1:735–743. doi:10.1038/ngeo337

    Article  Google Scholar 

  • Lamarque JF, Kyle GP, Meinshausen M, Riahi K, Smith SJ, van Vuuren DP, Conley AJ, Vitt F (2011) Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Clim change 109:191–212. doi:10.1007/s10584-011-0155-0

    Google Scholar 

  • Laurian A, Drijfhout SS, Hazeleger W, van Dorland R (2009) Global surface cooling: the atmospheric fast feedback response to a collapse of the thermohaline circulation Geophys Res Lett 36: L20708 doi: 10.1029/2009GL040938

  • Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619

  • McPhaden MJ, Busalacchi AJ, Cheney R, Donguy JR, Gage KS, Halpern D, Ji M, Julian P, Meyers G, Mitchum GT, Niiler PP, Picaut J, Reynolds RW, Smith N, Takeuchi K (1998) The tropical ocean global atmosphere (TOGA) observing system: a decade of progress. J Geophys Res 103:14169–14240

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Amer Meteor Soc 88:1383–1394

    Article  Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772

    Article  Google Scholar 

  • Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata T, Zebiak S (1998) ENSO theory. J Geophys Res 103:14261–14290

    Article  Google Scholar 

  • Palmer TN, Alessandri A, Andersen U, Cantelaube P, Davey M, Délécluse P, Déqué M, Díez E, Doblas-Reyes FJ, Feddersen H, Graham R, Gualdi S, Guérémy JF, Hagedorn R, Hoshen M, Keenlyside N, Latif M, Lazar A, Maisonnave E, Marletto V, Morse AP, Orfila B, Rogel P, Terres JM, Thomson MC (2004) Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull Amer Meteor Soc 85:853–872

    Article  Google Scholar 

  • Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ (2008) Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull Amer Meteor Soc 89:459–470

    Article  Google Scholar 

  • Penner JE, Andreae M, Annegarn M et al (2001) Aerosols, their direct and indirect effects. In: Houghton JT, Ding Y, Griggs DJ et al (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 289–416

    Google Scholar 

  • Penner JE, Quaas J, Storelvmo T, Takemura T, Boucher O, Guo H, Kirkevåg A, Kristjánsson JE, Seland Ø (2006) Model intercomparison of indirect aerosol effects. Atmos Chem Phys 6:3391–3405

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Amer Meteor Soc 89:303–311

    Article  Google Scholar 

  • Salas y Mélia D, Chauvin F, Déqué M, Douville H, Guérémy JF, Marquet P, Planton S, Royer JF, Tyteca S (2005) Description and validation of CNRM-CM3 global coupled climate model. Note de centre GMGEC (internal publication), CNRM, 103

  • Semtner AJ Jr (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6:379–389

    Article  Google Scholar 

  • Shutts G, Allen T, Berner J (2008) Stochastic parametrization of multiscale processes using a dual-grid approach. Phil Trans R Soc A 366:2625–2641

    Article  Google Scholar 

  • Storelvmo T, Lohmann U, Bennartz R (2009) What governs the spread in shortwave forcings in the transient IPCC AR4 models? Geophys Res Lett, doi: 10.1029/2008GL036069

  • Taylor KE, Stouffer RJ, Meehl GA (2011) A summary of the CMIP5 experiment design. http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_22Jan11_marked.pdf

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: Month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  • Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14:3433–3443

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Kiehl JT (2009) Earth’s global energy budget. Bull Amer Meteor Soc 90:311–323

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Valcke S (2006) OASIS3 user guide. PRISM Tech. Rep 3, 64 pp. Available online at http://www.prism.enes.org/Publications/Reports/oasis3_UserGuide_T3.pdf

  • van den Hurk BJJM, Viterbo P (2003) The Torne-Kalix PILPS2E experiment as testbed for modifications to the ECMWF land surface scheme. Global Planet Change 38:165–173

    Article  Google Scholar 

  • van den Hurk BJJM, Viterbo P, Beljaars ACM, Betts AK (2000) Offline validation of the ERA40 surface scheme. ECMWF Tech Memo 295, 42 pp ECMWF, Reading

    Google Scholar 

  • van der Molen MK, van den Hurk BJJM, Hazeleger W (2011) A dampened land use change climate response towards the tropics. Clim Dyn doi: 10.1007/s00382-011-1018-0

  • van Genuchten MTh (1980) A closed-from equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • van Ulden AP, van Oldenborgh GJ (2006) Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe. Atm Chem Phys 2006: 86–881, sref:1680-7324/acp/2006-6-863

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere Winter. Mon Weather Rev 109:784–812

    Article  Google Scholar 

  • Winton M (2006) Surface albedo feedback estimates for the AR4 climate models. J Clim 19:359–365

    Article  Google Scholar 

  • Xie P, Arkin PA (1996) Analysis of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim 9:840–858

    Article  Google Scholar 

  • Zalesak ST (1979) Fully multidimensional flux corrected transport algorithms for fluids. J Comput Phys 31:335–362

    Article  Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10:1004–1020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Hazeleger.

Additional information

This paper is a contribution to the special issue on EC-Earth, a global climate and earth system model based on the seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, and developed by the international EC-Earth consortium. This special issue is coordinated by Wilco Hazeleger (chair of the EC-Earth consortium) and Richard Bintanja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazeleger, W., Wang, X., Severijns, C. et al. EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39, 2611–2629 (2012). https://doi.org/10.1007/s00382-011-1228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1228-5

Keywords

Navigation