Skip to main content
Log in

A further assessment of vegetation feedback on decadal Sahel rainfall variability

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The effect of vegetation feedback on decadal-scale Sahel rainfall variability is analyzed using an ensemble of climate model simulations in which the atmospheric general circulation model ICTPAGCM (“SPEEDY”) is coupled to the dynamic vegetation model VEGAS to represent feedbacks from surface albedo change and evapotranspiration, forced externally by observed sea surface temperature (SST) changes. In the control experiment, where the full vegetation feedback is included, the ensemble is consistent with the observed decadal rainfall variability, with a forced component 60 % of the observed variability. In a sensitivity experiment where climatological vegetation cover and albedo are prescribed from the control experiment, the ensemble of simulations is not consistent with the observations because of strongly reduced amplitude of decadal rainfall variability, and the forced component drops to 35 % of the observed variability. The decadal rainfall variability is driven by SST forcing, but significantly enhanced by land-surface feedbacks. Both, local evaporation and moisture flux convergence changes are important for the total rainfall response. Also the internal decadal variability across the ensemble members (not SST-forced) is much stronger in the control experiment compared with the one where vegetation cover and albedo are prescribed. It is further shown that this positive vegetation feedback is physically related to the albedo feedback, supporting the Charney hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Note that the coefficient of variation is only shown where the mean rainfall is larger than 1 mm/day.

  2. Five members have been randomly plotted.

  3. The internal components are as described in Sect. 3 derived by subtracting the ensemble mean from every ensemble member. The results of the spectral analysis of the forced components are strongly determined by the common SST forcing and therefore not shown. The 90 % confidence limit has been derived from the ensembles.

  4. All modeled anomalies shown are at least 95 % statistically significant as derived from a t test using intra-ensemble standard deviations.

References

  • Ackerley D, Booth BB, Knight SHE, Highwood EJ, Frame DJ, Allen MR, Rowell DP (2011) Sensitivity of twentieth-century Sahel rainfall to sulfate aerosol and CO2 forcing. J Clim 24:4999–5014

    Article  Google Scholar 

  • Bader J, Latif M (2003) The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys Res Lett 30:21692172. doi:10.1029/2003GL018426

    Article  Google Scholar 

  • Barimalala R, Bracco A, Kucharski F (2011) The representation of the South Tropical Atlantic teleconnection to the Indian Ocean in the AR4 coupled models. Clim Dyn. doi:10.1007/s00382-011-1082-5

  • Biasutti M, Held IM, Sobel AH, Giannini A (2008) SST forcings and Sahel rainfall variability in simulations of the twentieth and twenty-first centuries. J Clim 21:3471-3486. doi: 10.1175/2007JCLI1896.1

    Google Scholar 

  • Biasutti M, Giannini A (2006) Robust Sahel drying in response to late 20th century forcings. Geophys Res Lett 33:L11706

    Article  Google Scholar 

  • Bourke W (1974) A multilevel spectral model. I. Formulation and hemispheric integrations. Mon Weather Rev 102:687–701

    Google Scholar 

  • Charney JG (1975) Dynamics of deserts and drought in Sahel. Q J Roy Meteorol Soc 101:193–202

    Article  Google Scholar 

  • Charney JG, Quirk WJ, Chow S, Kornfield J (1977) A comparative study of the effects of albedo change on drought in semi-arid regions. J Atmos Sci 34:1366–1385

    Google Scholar 

  • Clark DB, Xue YK, Harding RJ, Valdes PJ (2001) Modeling the impact of land surface degradation on the climate of tropical north Africa. J Clim14:1809–1822

    Article  Google Scholar 

  • Claussen M (1997) Modeling bio-geophysical feedback in the African and Indian monsoon region. Clim Dyn 14:247–257

    Article  Google Scholar 

  • Claussen M (1998) On multiple solutions of the atmosphere-vegetation system in present-day climate. Glob Change Biol 4:549–559

    Article  Google Scholar 

  • Feudale L, Kucharski F (2011) Mechanism Connecting African and Indian Monsoon Megadroughts. Clim Dyn. submitted

  • Govaerts Y, Lattanzio A (2008) Climate Change and Desertification. Glob Planet Change 64(3–4):139145. doi:10.1016/j.gloplacha.2008.04.004

  • Folland CK, Palmer TN, Parker DE (1986) Sahel rainfall and worldwide sea temperatures, 190185. Nature 320:602–607. doi:10.1038/320602a0

    Article  Google Scholar 

  • Folland C, Owen J, Ward MN, Colman A (1991) Prediction of seasonal rainfall in the Sahel region using empirical and dynamical models. J Forecast 10:21–56

    Article  Google Scholar 

  • Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030

    Article  Google Scholar 

  • Hagos SM, Cook KH (2008) Ocean warming and late-twentieth-century Sahel drought and recovery. J Clim 21:3797–3814

    Article  Google Scholar 

  • Held IM, Suarez MJ (1994) A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull Am Meteorol Soc 75:1825–1830

    Google Scholar 

  • Hoerling M, Hurrell F, Eischeid J, Phillips A (2006) Detection and attribution of twentieth-century Northern and Southern African Rainfall Change. J Clim 19:3989–4008

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis. Proj Bull Am Meteor Soc 77:437-471

    Google Scholar 

  • Kucharski F, Molteni F, Bracco A (2006) Decadal interactions between the Western Tropical Pacific and the North Atlantic Oscillation. Clim Dyn 26:79–91. doi:10.1007/s00382-005-0085-5

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Tompkins AM, Feudale L, Ruti P, Dell’Aquila A (2009) A Gill-Matsun-type mechanism explains the Tropical Atlantic influence on African and Indian Monsoon Rainfall. Q J Roy Meteor Soc 135:569–579. doi:10.1002/qj.406

    Article  Google Scholar 

  • Kucharski F, Scaife A, Yoo JH et al (2009) The CLIVAR C20C project: skill of simulating Indian monsoon rainfall on interannual to decadal timescales. Does GHG forcing play a role?. Clim Dyn 33:615–627. doi:10.1007/s00382-008-0462-y

    Article  Google Scholar 

  • Kucharski F, Molteni F, King MP, Farneti R, Kang I-S, Feudale L (2011) On the need of intermediate complexity general circulation models: a “SPEEDY” example. Submitted to BAMS

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Mohino E, Janicot S, Bader J (2011) Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim Dyn 37:419–440. doi:10.1007/s00382-010-0867-2

    Article  Google Scholar 

  • Molteni F (2003) Atmospheric simulations using a gcm with simplified physical parametrizations. i: Model climatology and variability in multi-decadal experiments. Clim Dyn 20(2):175–191

    Google Scholar 

  • Myneni RB, Nemani RR, Running SW (1997) Estimation of global leaf area index and absorped par using radiative transfer models. IEEE Trans Geosci Remote Sens 35:1380–1393

    Article  Google Scholar 

  • Palmer TN (1986) Influence of the Atlantic, Pacific and Indian Oceans on Sahel rainfall. Nature 322:251–253

    Article  Google Scholar 

  • Parker D, Folland C, Scaife A, Knight J, Colman A, Baines P, Dong B (2007) Decadal to multidecadal variability and the climate change background. J Geophys Res 112(D18):D18115

    Article  Google Scholar 

  • Peixoto JP, Oort AH (1983) The atmospheric branch of the hydrological cycle and climate. In: Beran M, Ratcliffe R (eds) Variations in the global water budget., D. Reidel, Norwell, p 565

    Google Scholar 

  • Pitman AJ, de Noblet-Ducoudre N, Cruz FT, Davin EL, Bonan GB, Brovkin V, Claussen M, Delire C, Ganzeveld L, Gayler V, van den Hurk BJJM, Lawrence PJ, van der Molen MK, Muller C, Reick CH, Seneviratne SI, Strengers BJ, Voldoire A (2009) Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys Res Lett 36:L14814. doi:10.1029/2009GL039076

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108. doi:10.1029/2002JD002670

  • Rotstayn LD, Lohman U (2002) Tropical rainfall trends and the indirect aerosol effect. J Clim 15:2103–2116

    Article  Google Scholar 

  • Rowell DP, Folland CK, Maskell K, Ward MN (1995) Variability of summer rainfall over tropical North Africa (1906–92). Q J Roy Meteor Soc 121:669–704

    Google Scholar 

  • Scaife AA et al (2009) The CLIVAR C20C project: selected twentieth century climate events. Clim Dyn 33:603–614

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Google Scholar 

  • Taylor CM, Lambin EF, Stephenne N, Harding RJ, Essery RLH (2002) The influence of land use change on climate in the Sahel. J Clim 15:3615–3629

    Google Scholar 

  • Wang G, Eltahir EAB, Foley JA, Pollard D, Levis S (2004) Decadal variability of rainfall in the Sahel: results from the coupled GENESIS-IBIS atmosphere-biosphere model. Clim Dyn 22:625–637. doi:10.1007/s00382-004-0411-3

    Article  Google Scholar 

  • Ward MN (1998) Diagnosis and short-lead time prediction of summer rainfall in tropical North Africa at interannual and multi-decadal time scales. J Clim 11:3167–3191

    Article  Google Scholar 

  • Xue Y, Shukla J (1993) The influence of land surface properties on Sahel climate. Part I: desertification. J Clim 6:2232–2244

    Article  Google Scholar 

  • Xue Y et al (2010) Intercomparison and analysis of the climatology of West African Monsoon in the West African Monsoon modeling and evaluation project (WAMME) first model intercomparison experiment. Clim Dyn. doi:10.1007/s00382-010-0778-2

  • Xue Y-K (1997) Biosphere feedback on regional climate in tropical North Africa. Q J Roy Meteor Soc 123:1483–1515

    Article  Google Scholar 

  • Yoshioka M, Mahowald NM, Conley AJ, Collins WD, Fillmore DW, Zender CS, Coleman DB (2007) Impact of desert dust radiative forcing on Sahel precipitation: relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J Clim 20:1445–1467. doi:10.1175/JCLI4056.1

    Article  Google Scholar 

  • Zeng N, Neelin JD, Lau K-M, Tucker CJ (1999) Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286:1537–1540

    Article  Google Scholar 

  • Zeng N, Neelin JD (2000) The role of vegetation-climate interaction and interannual variability in shaping the African Savanna. J Clim 13:2665–2670

    Article  Google Scholar 

  • Zeng N, Neelin JD, Chou C (2000) The first quasi-equilibrium tropical circulation model-implementation and simulation. J Atmos Sci 57:1767–1796

    Article  Google Scholar 

  • Zeng N (2003) Glacial-Interglacial atmospheric CO2 change-the glacial burial hypothesis. Adv Atmos Sci 20:677–693

    Article  Google Scholar 

  • Zeng N, Mariotti A, Wetzel P (2005) Terrestrial mechanisms of interannual CO2 variability. Global biogeochemical cycles 19:GB1016. doi:10.1029/2004GB002273

    Article  Google Scholar 

  • Zeng N (2007) Quasi-100ky glacial-interglacial cycles triggered by subglacial burial carbon release. Clim Past 3:135–153

    Article  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267

    Article  Google Scholar 

  • Zhang L et al (2011) An assessment of monsoon precipitation changes during 1901–2001. Clim Dyn 37:279–296. doi:10.1007/s00382-011-0993-5

    Article  Google Scholar 

  • Zheng XY, Eltahir EAB (1997) The response to deforestation and desertification in a model of West African monsoons. Geophys Res Lett 24:155–158

    Article  Google Scholar 

  • Zhou T, Zhang L, Li H (2008a) Changes in global land monsoon area and total rainfall accumulation over the last half century. Geophys Res Lett. doi:10.1029/2008GL034881

  • Zhou T, Yu R, Li H, Wang B (2008) Ocean forcing to changes in global monsoon precipitation over the recent half-century. J Clim 21(15):3833–3852

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank two anonymous reviewers for their constructive comments that helped improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Kucharski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucharski, F., Zeng, N. & Kalnay, E. A further assessment of vegetation feedback on decadal Sahel rainfall variability. Clim Dyn 40, 1453–1466 (2013). https://doi.org/10.1007/s00382-012-1397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1397-x

Keywords

Navigation