Skip to main content

Advertisement

Log in

North Pacific decadal variability in the CMIP5 last millennium simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Pacific ocean–atmosphere system exerts an important influence on the climate of Asia and North America, but the limited length of the observational record prevents a complete understanding of its bidecadal and multidecadal time scales. Paleoclimate reconstructions provide one source of information on longer time scales, although they differ in their estimation of the behavior of the Pacific decadal oscillation (PDO) prior to the instrumental period. Forced general circulation model simulations offer complementary long-term perspectives on both the history and dynamics of this important mode of variability. Here, we analyze the PDO in the ensemble of CMIP5/PMIP3 last millennium (past1000 + historical) simulations. We evaluate the modeled spatial, temporal, and spectral characteristics of this mode, as well as teleconnections between North Pacific variability and global climate. All models produce a mode of North Pacific variability over the last millennium with spatial patterns and spectral power density similar to observations. CCSM, FGOALS, and IPSL best reproduce observed spatial patterns, spectral characteristics, and teleconnections to terrestrial regions used in paleoclimate proxy reconstructions. In these simulations, the PDO shows no consistent response to solar or volcanic forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ault TR, Deser C, Newman M, Emile-Geay J (2013) Characterizing decadal to centennial variability in the equatorial pacific during the last millennium. Geophys Res Lett 40(13):3450–3456. doi:10.1002/grl.50647

    Article  Google Scholar 

  • Biondi F, Gershunov A, Cayan DR (2001) North Pacific decadal climate variability since 1661. J Clim 14:5–10

    Article  Google Scholar 

  • Bothe O, Jungclaus JH, Zanchettin D (2013) Consistency of the multi-model CMIP5/PMIP3-past1000 ensemble. Clim Past 9(6):2471–2487. doi:10.5194/cp-9-2471-2013

    Article  Google Scholar 

  • Brown PT, Li W, Li L, Ming Y (2014) Top-of-atmosphere radiative contribution to unforced decadal global temperature variability in climate models. Geophys Res Lett 41(14):5175–5183. doi:10.1002/2014gl060625

    Article  Google Scholar 

  • Buckley B, Anchukaitis K, Penny D, Fletcher R, Cook E, Sano M, Nam L, Wichienkeeo A, Minh T, Hong T (2010) Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Nat Acad Sci 107(15):6748–6752

    Article  Google Scholar 

  • Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9(9):2190–2196

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan R, Yin X, Gleason B, Vose R, Rutledge G, Bessemoulin P et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28

    Article  Google Scholar 

  • Compo JWGP, Sardeshmukh P (2006) Feasibility of a 100 year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87:175–190

    Article  Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277

    Article  Google Scholar 

  • Crowley TJ, Zielinski G, Vinther B, Udisti R, Kreutz K, Cole-Dai J, Castellano E (2008) Volcanism and the little ice age. PAGES News 16(2):22–23

    Google Scholar 

  • D’Arrigo R, Wilson R (2006) On the Asian expression of the PDO. Int J Climatol 26(12):1607–1617

    Article  Google Scholar 

  • D’Arrigo R, Villalba R, Wiles G (2001) Tree-ring estimates of Pacific decadal climate variability. Clim Dyn 18:219–224

    Article  Google Scholar 

  • Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett. doi:10.1029/2010GL043321

    Google Scholar 

  • Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, Scott JD, Kwon YO, Ohba M (2012) ENSO and pacific decadal variability in the community climate system model version 4. J Clim 25(8):2622–2651. doi:10.1175/jcli-d-11-00301.1

    Article  Google Scholar 

  • Deser C, Phillips AS, Alexander MA, Smoliak BV (2014) Projecting North American climate over the next 50 years: uncertainty due to internal variability. J Clim 27(6):2271–2296

    Article  Google Scholar 

  • Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, Noblet N, Duvel JP, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40(9–10):2123–2165. doi:10.1007/s00382-012-1636-1

    Article  Google Scholar 

  • Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10(9):2147–2153

    Article  Google Scholar 

  • Emile-Geay J, Seager R, Cane MA, Cook ER, Haug GH (2008) Volcanoes and enso over the past millennium. J Clim 21(13):3134–3148

    Article  Google Scholar 

  • Emile-Geay J, Cobb KM, Mann ME, Wittenberg AT (2013) Estimating central equatorial Pacific SST variability over the past millennium. Part II: Reconstructions and implications. J Clim 26(7):2329–2352

    Article  Google Scholar 

  • Evans MN, Cane MA, Schrag DP, Kaplan A, Linsley BK, Villalba R, Wellington GM (2001a) Support for tropically-driven Pacific decadal variability based on paleoproxy evidence. Geophys Res Lett 28:3689–3692

    Article  Google Scholar 

  • Evans MN, Kaplan A, Cane MA, Villalba R (2001b) Globality and optimality in climate field reconstructions from proxy data. In: Markgraf V (ed) Interhemispheric climate linkages. Cambridge University Press, Cambridge, pp 53–72

    Chapter  Google Scholar 

  • Evans MN, Kaplan A, Cane MA (2002) Pacific sea surface temperature field reconstruction from coral \(\rm\delta ^{18}O\) data using reduced space objective analysis. Paleoceanography. doi:10.1029/2000PA000590

    Google Scholar 

  • Gao C, Robock A, Ammann CM (2008) Volcanic forcing of climate over the past 1500 years: an improved ice-core-based index for climate models. J Geophys Res 113:D23111

    Article  Google Scholar 

  • Gao CC, Robock A, Self S, Witter JB, Steffenson JP, Clausen HB, Siggaard-Andersen ML, Johnsen S, Mayewski PA, Ammann C (2006) The 1452 or 1453 AD Kuwae eruption signal derived from multiple ice core records: greatest volcanic sulfate event of the past 700 years. J Geophys Res Atmos 111:D12107

    Article  Google Scholar 

  • Garreaud RD, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J Clim 12:2113–2123

    Article  Google Scholar 

  • Gedalof Z, Smith DJ (2001) Interdecadal climate variability and regime-scale shifts in Pacific North America. Geophys Res Lett 28:1515–1518. doi:10.1029/2000GL011779

    Article  Google Scholar 

  • Gedalof Z, Mantua NJ, Peterson DL (2002) A multi-century perspective of variability in the Pacific decadal oscillation: new insights from tree rings and coral. Geophys Res Lett. doi:10.1029/2002GL015824

    Google Scholar 

  • Gershunov A, Barnett TP (1998) Interdecadal modulation of ENSO teleconnections. Bull Am Meteorol Soc 79(12):2715–2725

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5(3):572–597. doi:10.1002/jame.20038

    Article  Google Scholar 

  • Gu G, Adler RF (2012) Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: global warming and/or pacific decadal variability? Clim Dyn 40(11–12):3009–3022. doi:10.1007/s00382-012-1443-8

    Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. doi:10.1029/2010RG000345

    Article  Google Scholar 

  • Hunt BG (2008) Secular variation of the Pacific Decadal Oscillation, the North Pacific Oscillation and climatic jumps in a multi-millennial simulation. Clim Dyn 30(5):467–483. doi:10.1007/s00382-007-0307-0

    Article  Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res Oceans (1978–2012) 103(C9):18567–18589

    Article  Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the north Atlantic sector. Nature 453(7191):84–88. doi:10.1038/nature06921

    Article  Google Scholar 

  • Kipfmueller KF, Larson ER, George SS (2012) Does proxy uncertainty affect the relations inferred between the pacific decadal oscillation and wildfire activity in the western united states? Geophys Res Lett. doi:10.1029/2011gl050645

    Google Scholar 

  • Knutson TR, Zeng F, Wittenberg AT (2013) Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J Clim 26(22):8709–8743

    Article  Google Scholar 

  • Landrum L, Otto-Bliesner BL, Wahl ER, Conley A, Lawrence PJ, Rosenbloom N, Teng H (2013a) Last millennium climate and its variability in CCSM4. J Clim 26(4):1085–1111. doi:10.1175/jcli-d-11-00326.1

    Article  Google Scholar 

  • Landrum L, Otto-Bliesner BL, Wahl ER, Conley A, Lawrence PJ, Rosenbloom N, Teng H (2013b) Last millennium climate and its variability in CCSM4. J Clim 26(4):1085–1111. doi:10.1175/jcli-d-11-00326.1

    Article  Google Scholar 

  • Lavigne F, Degeai JP, Komorowski JC, Guillet S, Robert V, Lahitte P, Oppenheimer C, Stoffel M, Vidal CM, Surono Pratomo I, Wassmer P, Hajdas I, Hadmoko DS, de Belizal E (2013) Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani volcanic complex, Indonesia. Proc Natl Acad Sci 110(42):16742–16747. doi:10.1073/pnas.1307520110

    Article  Google Scholar 

  • Livezey RE, Chen WY (1983) Statistical field significance and its determination by monte carlo techniques. Month Weather Rev 111(1):46–59. doi:10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;210.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2

  • Lyon B, Barnston AG, DeWitt DG (2013) Tropical pacific forcing of a 1998–1999 climate shift: observational analysis and climate model results for the boreal spring season. Clim Dyn 43(3–4):893–909. doi:10.1007/s00382-013-1891-9

    Google Scholar 

  • Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • McAfee SA (2014) Consistency and the lack thereof in Pacific decadal oscillation impacts on North American winter climate. J Clim 27(19):7410–7431. doi:10.1175/jcli-d-14-00143.1

    Article  Google Scholar 

  • McCabe GJ, Palecki MA, Betancourt J (2004a) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc Natl Acad Sci USA 101(12):4136–4141

    Article  Google Scholar 

  • McCabe GJ, Palecki MA, Betancourt JL (2004b) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc Nat Acad Sci 101(12):4136–4141. doi:10.1073/pnas.0306738101

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Branstator G (2012) Mechanisms contributing to the warming hole and the consequent U.S. East–West differential of heat extremes. J Clim 25(18):6394–6408. doi:10.1175/jcli-d-11-00655.1

    Article  Google Scholar 

  • Meehl GA, Hu A, Arblaster JM, Fasullo J, Trenberth KE (2013) Externally forced and internally generated decadal climate variability associated with the interdecadal pacific oscillation. J Clim 26(18):7298–7310. doi:10.1175/jcli-d-12-00548.1

    Article  Google Scholar 

  • Minobe S (1997) A 50–70 year climatic oscillation over the North Pacific and North America. Geophys Res Lett 24:683–686

    Article  Google Scholar 

  • Minobe S (1999) Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys Res Lett 26(7):855–858

    Article  Google Scholar 

  • Neumaier A, Schneider T (2001) Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw 27(1):27–57

    Article  Google Scholar 

  • Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the pacific decadal oscillation. J Clim 16(23):3853–3857. doi:10.1175/1520-0442(2003)016<3853:evotpd>2.0.co;210.1175/1520-0442(2003)016<3853:evotpd>2.0.co;2

  • Park JH, An SI, Yeh SW, Schneider N (2013) Quantitative assessment of the climate components driving the pacific decadal oscillation in climate models. Theor Appl Climatol 112(3–4):431–445

    Article  Google Scholar 

  • Peterson WT, Schwing FB (2003) A new climate regime in northeast Pacific ecosystems. Geophys Res Lett. doi:10.1029/2003GL017528

    Google Scholar 

  • Phipps SJ, McGregor HV, Gergis J, Gallant AJE, Neukom R, Stevenson S, Ackerley D, Brown JR, Fischer MJ, van Ommen TD (2013) Paleoclimate data-model comparison and the role of climate forcings over the past 1500 years. J Clim 26(18):6915–6936. doi:10.1175/jcli-d-12-00108.1

    Article  Google Scholar 

  • Polade SD, Gershunov A, Cayan DR, Dettinger MD, Pierce DW (2013) Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 andCMIP5 models. Geophys Res Lett 40(10):2296–2301. doi:10.1002/grl.50491

    Article  Google Scholar 

  • Priestley MB (1965) Evolutionary spectra and non-stationary processes. J R Stat Soc Ser B (Methodol) 27(2):204–237

    Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. doi:10.1029/2002jd002670

    Google Scholar 

  • Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell TJ, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the Mid-Nineteenth Century: the HadSST2 dataset. J Clim 19(3):446–469. doi:10.1175/jcli3637.1

    Article  Google Scholar 

  • Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci Model Dev 4:33–45. doi:10.5194/gmd-4-33-2011

    Article  Google Scholar 

  • Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2012) Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geoscientific Model. Development 5(1):185–191

    Google Scholar 

  • Schmidt GA, Kelley M, Nazarenko L, Ruedy R, Russell GL, Aleinov I, Bauer M, Bauer SE, Bhat MK, Bleck R, Canuto V, Chen YH, Cheng Y, Clune TL, Genio AD, de Fainchtein R, Faluvegi G, Hansen JE, Healy RJ, Kiang NY, Koch D, Lacis AA, LeGrande AN, Lerner J, Lo KK, Matthews EE, Menon S, Miller RL, Oinas V, Oloso AO, Perlwitz JP, Puma MJ, Putman WM, Rind D, Romanou A, Sato M, Shindell DT, Sun S, Syed RA, Tausnev N, Tsigaridis K, Unger N, Voulgarakis A, Yao MS, Zhang J (2014) Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J Adv Model Earth Syst 6(1):141–184. doi:10.1002/2013ms000265

    Article  Google Scholar 

  • Schneider N, Cornuelle BD (2005) The forcing of the Pacific decadal oscillation. J Clim 18(21):4355–4373. doi:10.1175/jcli3527.1

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M (2011) GPCC Full Data Reanalysis Version 6.0 at 1.0: monthly land-surface precipitation from Rain-Gauges built on GTS-based and historic data. doi:10.5676/DWD_GPCC/FD_M_V6_050

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2013) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115(1–2):15–40. doi:10.1007/s00704-013-0860-x

    Google Scholar 

  • Sheffield J, Camargo SJ, Fu R, Hu Q, Jiang X, Johnson N, Karnauskas KB, Kim ST, Kinter J, Kumar S, Langenbrunner B, Maloney E, Mariotti A, Meyerson JE, Neelin JD, Nigam S, Pan Z, Ruiz-Barradas A, Seager R, Serra YL, Sun DZ, Wang C, Xie SP, Yu JY, Zhang T, Zhao M (2013) North american climate in CMIP5 experiments. Part II: evaluation of historical simulations of intraseasonal to decadal variability. J Clim 26(23):9247–9290. doi:10.1175/jcli-d-12-00593.1

    Article  Google Scholar 

  • Smerdon JE (2011) Climate models as a test bed for climate reconstruction methods: pseudoproxy experiments. Wiley Interdiscip Rev Clim Change 3(1):63–77. doi:10.1002/wcc.149

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi:10.1175/2007jcli2100.1

    Article  Google Scholar 

  • St. George S, Ault T (2011) Is energetic decadal variability a stable feature of the central Pacific Coast’s winter climate? J Geophys Res 116:D12102. doi:10.1029/2010JD015325

    Article  Google Scholar 

  • Steiger NJ, Hakim GJ, Steig EJ, Battisti DS, Roe GH (2014) Assimilation of time-averaged pseudoproxies for climate reconstruction. J Clim 27(1):426–441. doi:10.1175/jcli-d-12-00693.1

    Article  Google Scholar 

  • Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the holocene. Geophys Res Lett. doi:10.1029/2009gl040142

    Google Scholar 

  • Stoner AMK, Hayhoe K, Wuebbles DJ (2009) Assessing general circulation model simulations of atmospheric teleconnection patterns. J Clim 22(16):4348–4372. doi:10.1175/2009jcli2577.1

    Article  Google Scholar 

  • Swetnam TW, Betancourt JL (2010) Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. In: Tree rings and natural hazards. Springer, Berlin, pp 329–359. doi:10.1007/978-90-481-8736-2_32

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70:1055–1096

    Article  Google Scholar 

  • Tierney JE, Abram NJ, Anchukaitis KJ, Evans MN, Giry C, Kilbourne KH, Saenger CP, Wu HC, Zinke J (2015) Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography. doi:10.1002/2014PA002717

    Google Scholar 

  • Vieira LEA, Solanki SK, Krivova NA, Usoskin I (2011) Evolution of the solar irradiance during the Holocene. Astronomy Astrophys. doi:10.1051/0004-6361/201015843

    Google Scholar 

  • Wang H, Schubert S, Suarez M, Chen J, Hoerling M, Kumar A, Pegion P (2009) Attribution of the seasonality and regionality in climate trends over the United States during 1950–2000. J Clim 22(10):2571–2590. doi:10.1175/2008jcli2359.1

    Article  Google Scholar 

  • Weaver SJ (2013) Factors associated with decadal variability in great plains summertime surface temperatures. J Clim 26(1):343–350. doi:10.1175/jcli-d-11-00713.1

    Article  Google Scholar 

  • Wise EK (2014) Tropical Pacific and Northern Hemisphere influences on the coherence of Pacific decadal oscillation reconstructions. Int J Climatol 35(1):154–160. doi:10.1002/joc.3966

    Article  Google Scholar 

  • Xiao-Ge X, Tong-Wen W, Jiang-Long L, Zai-Zhi W, Wei-Ping L, Fang-Hua W (2012) How well does BCC\_CSM1.1 reproduce the 20th century climate change over China? Atmos Ocean Sci Lett 6(1):21–26

    Google Scholar 

  • Yim BY, Kwon M, Min HS, Kug JS (2015) Pacific decadal oscillation and its relation to the extratropical atmospheric variation in CMIP5. Clim Dyn 44(5–6):1521–1540. doi:10.1007/s00382-014-2349-4

    Article  Google Scholar 

  • Zanchettin D, Rubino A, Matei D, Bothe O, Jungclaus JH (2012) Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Clim Dyn 40(5–6):1301–1318. doi:10.1007/s00382-012-1361-9

    Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10(5):1004–1020

    Article  Google Scholar 

  • Zhou T, Li B, Man W, Zhang L, Zhang J (2011) A comparison of the Medieval Warm Period, Little Ice Age and 20th century warming simulated by the FGOALS climate system model. Chin Sci Bull 56(28–29):3028–3041. doi:10.1007/s11434-011-4641-6

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This research was funded by a grant for the US National Science Foundation (AGS-1159430). LEF participated in this research as part of Northeastern University’s Co-op and the Woods Hole Oceanographic Guest Student program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Anchukaitis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5080 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleming, L.E., Anchukaitis, K.J. North Pacific decadal variability in the CMIP5 last millennium simulations. Clim Dyn 47, 3783–3801 (2016). https://doi.org/10.1007/s00382-016-3041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3041-7

Keywords

Navigation