Skip to main content

Advertisement

Log in

Twentieth-century atmospheric river activity along the west coasts of Europe and North America: algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A new atmospheric-river detection and tracking scheme based on the magnitude and direction of integrated water vapour transport is presented and applied separately over 13 regions located along the west coasts of Europe (including North Africa) and North America. Four distinct reanalyses are considered, two of which cover the entire twentieth-century: NOAA-CIRES Twentieth Century Reanalysis v2 (NOAA-20C) and ECMWF ERA-20C. Calculations are done separately for the OND and JFM-season and, for comparison with previous studies, for the ONDJFM-season as a whole. Comparing the AR-counts from NOAA-20C and ERA-20C with a running 31-year window looping through 1900–2010 reveals differences in the climatological mean and inter-annual variability which, at the start of the twentieth-century, are much more pronounced in western North America than in Europe. Correlating European AR-counts with the North Atlantic Oscillation (NAO) reveals a pattern reminiscent of the well-know precipitation dipole which is stable throughout the entire century. A similar analysis linking western North American AR-counts to the North Pacific index (NPI) is hampered by the aforementioned poor reanalysis agreement at the start of the century. During the second half of the twentieth-century, the strength of the NPI-link considerably varies with time in British Columbia and the Gulf of Alaska. Considering the period 1950–2010, AR-counts are then associated with other relevant large-scale circulation indices such as the East Atlantic, Scandinavian, Pacific-North American and West Pacific patterns (EA, SCAND, PNA and WP). Along the Atlantic coastline of the Iberian Peninsula and France, the EA-link is stronger than the NAO-link if the OND season is considered and the SCAND-link found in northern Europe is significant during both seasons. Along the west coast of North America, teleconnections are generally stronger during JFM in which case the NPI-link is significant in any of the five considered subregions, the PNA-link is significant in British Columbia and the Gulf of Alaska and the WP-link is so along the U.S. West Coast. During OND, these links are significant in the Gulf of Alaska only. If AR-counts are calculated upon persistent (instead of instantaneous) ARs, the link to the NAO weakens over the British Isles and western Iberia. For the experimental set-ups most closely mirroring those applied in Lavers et al. (J Geophys Res Atmos 117, 2012. doi:10.1029/2012JD018027) and Ramos et al. (J Hydrometeorol 16(2):579–597, 2015. doi:10.1175/JHM-D-14-0103.1), the NAO-links are completely or partly insignificant indicating that the inclusion of the persistence criterion notably alters the results. Visual support for the present study is provided by an exhaustive historical atmospheric river archive built at http://www.meteo.unican.es/atmospheric-rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Author’s comment: since the two aforementioned studies rely on reanalysis data, the corresponding results might be sensitive to the physics and parametrization schemes of the global circulation model used for re-analysing. Note that the relative contribution of the two aforementioned factors might change if other models and/or parametrization schemes are used.

  2. common to all applied reanalysis datasets.

  3. Note that the indices provided by the Climate Prediction Center are available from 1950 onwards only.

  4. i. e. Considering persistent ARs during ONDJFM 1979/80–2009/10 derived from ERA-Interim.

  5. i. e. Considering persistent ARs during ONDJFM 1950/51–2011/12 derived from NCEP/NCAR.

References

  • Bao J, Michelson S, Neiman P, Ralph F, Wilczak J (2006) Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: their formation and connection to tropical moisture. Mon Weather Rev 134(4):1063–1080. doi:10.1175/MWR3123.1

    Article  Google Scholar 

  • Barnston A, Livezey R (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115(6):1083–1126. doi:10.1175/1520-0493(1987) 115<1083:CSAPOL>2.0.CO;2

    Article  Google Scholar 

  • Brands S, Gutierrez JM, Herrera S, Cofino AS (2012) On the use of reanalysis data for downscaling. J Clim 25(7):2517–2526. doi:10.1175/JCLI-D-11-00251.1

    Article  Google Scholar 

  • Broennimann S (2007) Impact of El Nino Southern oscillation on European climate. Rev Geophys 45(2). doi:10.1029/2006RG000199

  • Champion AJ, Allan RP, Lavers DA (2015) Atmospheric rivers do ot explain UK summer extreme rainfall. J Geophys Res Atmos. doi:10.1002/2014JD022863

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE Jr, Vose RS, Rutledge G, Bessemoulin P, Broennimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli O, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654, A):1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • Dacre HF, Clark PA, Martinez-Alvarado O, Stringer MA, Lavers DA (2015) How do atmospheric rivers form? Bull Am Meteorol Soc 96(8):1243–1255. doi:10.1175/BAMS-D-14-00031.1

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Koehler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656, Part a):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Delworth T, Mann M (2000) Observed and simulated multidecadal variability in the Northern hemisphere. Clim Dyn 16(9):661–676. doi:10.1007/s003820000075

    Article  Google Scholar 

  • Deser C, Phillips A, Hurrell J (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Clim 17(16):3109–3124. doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2

    Article  Google Scholar 

  • Dettinger MD, Ralph FM, Das T, Neiman PJ, Cayan DR (2011) Atmospheric rivers, floods and the water resources of California. Water 3(2):445–478. doi:10.3390/w3020445

    Article  Google Scholar 

  • Eiras-Barca J, Brands S, Miguez-Macho G (2016) Seasonal variations in North Atlantic atmospheric river activity and associations with anomalous precipitation over the Iberian Atlantic Margin. J Geophys Res (in press). doi:10.1002/2015JD023379

  • Ferguson CR, Villarini G (2012) Detecting inhomogeneities in the Twentieth Century reanalysis over the central United States. J Geophys Res Atmos 117. doi:10.1029/2011JD016988

  • Garaboa D, Eiras-Barca J, Huhn F, Nuzuri VPM (2015) Langrangian coherent structures along atmospheric rivers. Chaos 25:063105. doi:10.1063/1.4919768

    Article  Google Scholar 

  • Gimeno L, Nieto R, Vázquez M, Lavers D (2014) Atmospheric rivers: a mini-review. Front Earth Sci. doi:10.3389/feart.2014.00002

  • Gimeno L, Stohl A, Trigo RM, Dominguez F, Yoshimura K, Yu L, Drumond A, Maria Duran-Quesada A, Nieto R (2012) Oceanic and terrestrial sources of continental precipitation. Rev Geophys 50. doi:10.1029/2012RG000389

  • Guan B, Waliser DE, Molotch NP, Fetzer EJ, Neiman PJ (2012) Does the Madden-Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon Weather Rev 140(2):325–342. doi:10.1175/MWR-D-11-00087.1

    Article  Google Scholar 

  • Guan B, Waliser DE (2016) Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J Geophys Res 120 (in press). doi:10.1002/2015JD024257

  • Higgins R, Schemm J, Shi W, Leetmaa A (2000) Extreme precipitation events in the western United States related to tropical forcing. J Clim 13(4):793–820. doi:10.1175/1520-0442(2000)013<0793:EPEITW>2.0.CO;2

    Article  Google Scholar 

  • Hurrell J (1995) Decadal trends in the North-Atlantic oscillation—regional temperatures and precipitation. Science 269(5224):676–679. doi:10.1126/science.269.5224.676

    Article  Google Scholar 

  • Hurrell J, Kushnir Y, Ottersen G, Visbeck M (2003) The North Atlantic oscillation: climate significance and environmental impact. Geophys Monogr Ser 134 (AGU, Washington, DC)

  • Jiang T, Deng Y (2011) Downstream modulation of North Pacific atmospheric river activity by East Asian cold surges. Geophys Res Lett 38. doi:10.1029/2011GL049462

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Kim J, Waliser DE, Neiman PJ, Guan B, Ryoo JM, Wick GA (2013) Effects of atmospheric river landfalls on the cold season precipitation in California. Clim Dyn 40(1–2):465–474. doi:10.1007/s00382-012-1322-3

    Article  Google Scholar 

  • Kim HM, Alexander MA (2015) ENSO’s modulation of water vapor transport over the Pacific-North American region. J Clim 28(9):3846–3856. doi:10.1175/JCLI-D-14-00725.1

    Article  Google Scholar 

  • Knippertz P, Wernli H, Glaeser G (2013) A global climatology of tropical moisture exports. J Clim 26(10):3031–3045. doi:10.1175/JCLI-D-12-00401.1

    Article  Google Scholar 

  • Knippertz P, Wernli H (2010) A Lagrangian climatology of tropical moisture exports to the Northern hemispheric extratropics. J Clim 23(4):987–1003. doi:10.1175/2009JCLI3333.1

    Article  Google Scholar 

  • Lavers DA, Allan RP, Wood EF, Villarini G, Brayshaw DJ, Wade AJ (2011) Winter floods in Britain are connected to atmospheric rivers. Geophys Res Lett 38. doi:10.1029/2011GL049783

  • Lavers DA, Villarini G, Allan RP, Wood EF, Wade AJ (2012) The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J Geophys Res Atmos 117. doi:10.1029/2012JD018027

  • Lavers DA, Villarini G (2013) The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys Res Lett 40(12):3259–3264. doi:10.1002/grl.50636

    Article  Google Scholar 

  • Lavers DA, Villarini G (2015) The contribution of atmospheric rivers to precipitation in Europe and the United States. J Hydrol 522:382–390. doi:10.1016/j.jhydrol.2014.12.010

    Article  Google Scholar 

  • Leung LR, Qian Y (2009) Atmospheric rivers induced heavy precipitation and flooding in the western US simulated by the WRF regional climate model. Geophys Res Lett 36. doi:10.1029/2008GL036445

  • Neiman P, Persson P, Ralph F, Jorgensen D, White A, Kingsmill D (2004) Modification of fronts and precipitation by coastal blocking during an intense landfalling winter storm in southern California: observations during CALJET. Mon Weather Rev 132(1):242–273. doi:10.1175/1520-0493(2004)132<0242:MOFAPB>2.0.CO;2

    Article  Google Scholar 

  • Neiman PJ, Ralph FM, Wick GA, Lundquist JD, Dettinger MD (2008) Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J Hydrometeorol 9(1):22–47. doi:10.1175/2007JHM855.1

    Article  Google Scholar 

  • Newell R, Newell N, Zhu Y, Scott C (1992) Tropospheric rivers—a pilot-study. Geophys Res Lett 19(24):2401–2404. doi:10.1029/92GL02916

    Article  Google Scholar 

  • Newman M, Kiladis GN, Weickmann KM, Ralph FM, Sardeshmukh PD (2012) Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J Clim 25:73417361. doi:10.1175/JCLI-D-11-00665.1

    Article  Google Scholar 

  • Payne AE, Magnusdottir G (2014) Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA reanalysis. J Clim 27(18):7133–7150. doi:10.1175/JCLI-D-14-00034.1

    Article  Google Scholar 

  • Poli P, Hersbach H, Tan D, Dee D, Thépaut JN, Simmons A, Peubey C, Laloyaux P, Komori T, Berrisford P, Dragani R, Trémolet Y, Hólm E, Bonavita M, Isaksen L, Fisher M (2013) The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (era-20c). Technical report, ERA report series 14

  • Qian B, Corte-Real J, Xu H (2000) Is the North Atlantic oscillation the most important atmospheric pattern for precipitation in Europe? J Geophys Res Atmos 105(D9):11,901–11,910. doi:10.1029/2000JD900102

    Article  Google Scholar 

  • Ralph F, Neiman P, Wick G (2004) Satellite and CALJET aircraft observations of atmospheric rivers over the eastern north pacific ocean during the winter of 1997/98. Mon Weather Rev 132(7):1721–1745. doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2

    Article  Google Scholar 

  • Ralph FM, Coleman T, Neiman PJ, Zamora RJ, Dettinger MD (2013) Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal Northern California. J Hydrometeorol 14(2):443–459. doi:10.1175/JHM-D-12-076.1

    Article  Google Scholar 

  • Ramos AM, Trigo RM, Liberato MLR, Tome R (2015) Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. J Hydrometeorol 16(2):579–597. doi:10.1175/JHM-D-14-0103.1

    Article  Google Scholar 

  • Sodemann H, Stohl A (2013) Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon Weather Rev 141(8):2850–2868. doi:10.1175/MWR-D-12-00256.1

    Article  Google Scholar 

  • Sterl A (2004) On the (in)homogeneity of reanalysis products. J Clim 17(19):3866–3873. doi:10.1175/1520-0442(2004)017<3866:OTIORP>2.0.CO;2

    Article  Google Scholar 

  • Sturaro G (2003) A closer look at the climatological discontinuities present in the NCEP/NCAR reanalysis temperature due to the introduction of satellite data. Clim Dyn 21(3–4):309–316. doi:10.1007/s00382-003-0334-4

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Trenberth K, Branstator G, Karoly D, Kumar A, Lau N, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geohphys Res Atmos 103(C7):14,291–14,324. doi:10.1029/97JC01444

    Article  Google Scholar 

  • Trenberth K, Hurrell J (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9(6):303–319. doi:10.1007/BF00204745

    Article  Google Scholar 

  • Trigo RM, Pozo-Vázquez D, Osborn TJ, Castro-Díez Y, Gámiz-Fortis S, Esteban-Parra MJ (2004) North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int J Climatol 24(8):925–944. doi:10.1002/joc.1048

    Article  Google Scholar 

  • Warner MD, Mass CF, Salathé EP Jr (2015) Changes in winter atmospheric rivers along the North American west coast in CMIP5 climate models. J Hydrometeorol 16:118–128. doi:10.1175/JHM-D-14-0080.1

    Article  Google Scholar 

  • Zhang Y, Wallace J, Battisti D (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10(5):1004–1020. doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2

    Article  Google Scholar 

  • Zhu Y, Newell R (1994) Atmospheric rivers and bombs. Geophys Res Lett 21(18):1999–2002. doi:10.1029/94GL01710

    Article  Google Scholar 

  • Zhu Y, Newell R (1998) A proposed algorithm for moisture fluxes from atmospheric rivers. Mon Weather Rev 126(3):725–735. doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jorge Eiras-Barca, Daniel Garaboa, Dr. Gonzalo Miguez-Macho, Dr. David Lavers and two anonymous referees for their constructive criticism and helpful advice. They acknowledge the use of the climate indices provided by UCAR https://climatedataguide.ucar.edu/climate-data/ and the Climate Prediction Center http://www.cpc.ncep.noaa.gov/, the ECMWF ERA-20C and ERA-Interim reanalyses http://apps.ecmwf.int/datasets, the NOAA-CIRES twentieth Century Reanalysis version 2 http://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2.html and the NCEP/NCAR reanalysis 1 http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html. SB would like to thank the TRAGSA Group and the CSIC JAE-PREDOC programme for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Brands.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S01)

As Fig. 9, but for de-trended data (pdf 385 KB)

Fig. S02)

As Fig. 10, but for de-trended data (pdf 398 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brands, S., Gutiérrez, J.M. & San-Martín, D. Twentieth-century atmospheric river activity along the west coasts of Europe and North America: algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns. Clim Dyn 48, 2771–2795 (2017). https://doi.org/10.1007/s00382-016-3095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3095-6

Keywords

Navigation