Skip to main content

Advertisement

Log in

On the sensitivity of Antarctic sea ice model biases to atmospheric forcing uncertainties

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Although atmospheric reanalyses are an extremely valuable tool to study the climate of polar regions, they suffer from large uncertainties in these data-poor areas. In this work, we examine how Antarctic sea ice biases in an ocean-sea ice model are related to these forcing uncertainties. Three experiments are conducted in which the NEMO-LIM model is driven by different atmospheric forcing sets. The minimum ice extent, the ice motion and the ice thickness are sensitive to the reanalysis chosen to drive the model, while the wintertime ice extent and inner pack concentrations are barely affected. The analysis of sea ice concentration budgets allows identifying the processes leading to differences between the experiments, and also indicates that large and similar errors compared to observations are present in all three cases. Our assessment of the influence of forcing inaccuracies on the simulated Antarctic sea ice allows disentangling two types of model biases: the ones that can be reduced thanks to better atmospheric forcings, and those that would require improvements of the physics of the ice or ocean model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barthélemy A, Fichefet T, Goosse H (2016) Spatial heterogeneity of ocean surface boundary conditions under sea ice. Ocean Modell 102:82–98. doi:10.1016/j.ocemod.2016.05.003

    Article  Google Scholar 

  • Barthélemy A, Fichefet T, Goosse H, Madec G (2016) A multi-column vertical mixing scheme to parameterize the heterogeneity of oceanic conditions under sea ice. Ocean Modell 104:28–44. doi:10.1016/j.ocemod.2016.05.005

    Article  Google Scholar 

  • Berliand ME, Strokina TG (1980) Global distribution of the total amount of clouds (in Russian). Tech. rep., Hydrometeorological Publishing House, Leningrad

    Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed-layer physics. J Phys Oceanogr 23(7):1363–1388. doi:10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2

    Article  Google Scholar 

  • Bouillon S, Fichefet T, Legat V, Madec G (2013) The elastic-viscous-plastic method revisited. Ocean Modell 71:2–12. doi:10.1016/j.ocemod.2013.05.013

    Article  Google Scholar 

  • Bracegirdle TJ, Stephenson DB, Turner J, Phillips T (2015) The importance of sea ice area biases in 21st century multimodel projections of Antarctic temperature and precipitation. Geophys Res Lett 42(24):10,832–10,839. doi:10.1002/2015GL067055

    Article  Google Scholar 

  • Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell 31(3–4):88–104. doi:10.1016/j.ocemod.2009.10.005

    Article  Google Scholar 

  • Bromwich DH, Fogt RL, Hodges KI, Walsh JE (2007) A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J Geophys Res 112(D10):D10,111. doi:10.1029/2006JD007859

    Article  Google Scholar 

  • Cavalieri DJ, Parkinson CL, Gloersen P, Zwally H (1996) Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. [1979–2010], NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA, doi:10.5067/8GQ8LZQVL0VL

  • Chaudhuri AH, Ponte RM, Forget G (2016) Impact of uncertainties in atmospheric boundary conditions on ocean model solutions. Ocean Modell 100:96–108. doi:10.1016/j.ocemod.2016.02.003

    Article  Google Scholar 

  • Dai A, Trenberth KE (2002) Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeor 3(6):660–687. doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2

  • Dansereau V, Weiss J, Saramito P, Lattes P (2016) A Maxwell elasto-brittle rheology for sea ice modelling. Cryosphere 10(3):1339–1359. doi:10.5194/tc-10-1339-2016

    Article  Google Scholar 

  • Depoorter MA, Bamber JL, Griggs JA, Lenaerts JTM, Ligtenberg SRM, van den Broeke MR, Moholdt G (2013) Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502(7469):89–92. doi:10.1038/nature12567

    Article  Google Scholar 

  • Dussin R, Barnier B, Brodeau L, Molines JM (2016) The making of the DRAKKAR Forcing Set DFS5. Drakkar/myocean report 01-04-16, Laboratoire de Glaciologie et de Géophysique de l’Environnement, Université de Grenoble, Grenoble, France

  • EUMETSAT (2015) Global sea ice concentration reprocessing dataset 1978-2015 (v1.2). http://osisaf.met.no, Ocean and Sea Ice Satelitte Application Facility, Norwegian and Danish Meteorological Institutes

  • Fetterer F, Knowles K, Meier W, Savoie M (2016) Sea ice index, version 2. Updated daily. National Snow and Ice Data Center, Boulder, Colorado. doi:10.7265/N5736NV7

  • Fowler C, Maslanik J, Emery W, Tschudi M (2013) Polar Pathfinder Daily 25 km EASE-grid sea ice motion vectors. version 2. [2003–2010]. National Snow and Ice Data Center, Boulder. doi:10.5067/O57VAIT2AYYY

  • Gent PR, Mcwilliams JC (1990) isopycnal mixing in ocean circulation models. J Phys Oceanogr 20(1):150–155. doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2

  • Goosse H (1997) Modelling the large-scale behaviour of the coupled ocean-sea-ice system. PhD thesis, Université catholique de Louvain

  • Haid V, Timmermann R, Ebner L, Heinemann G (2015) Atmospheric forcing of coastal polynyas in the south-western Weddell Sea. Antarct Sci 27(4):388–402. doi:10.1017/S0954102014000893

    Article  Google Scholar 

  • Heil P, Fowler CW, Maslanik JA, Emery WJ, Allison I (2001) A comparison of East Antarctic sea-ice motion derived using drifting buoys and remote sensing. Ann Glaciol 33(1):139–144. doi:10.3189/172756401781818374

    Article  Google Scholar 

  • Hobbs WR, Massom R, Stammerjohn S, Reid P, Williams G, Meier W (2016) A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob Planet Change 143:228–250. doi:10.1016/j.gloplacha.2016.06.008

    Article  Google Scholar 

  • Holland PR, Kimura N (2016) Observed concentration budgets of Arctic and Antarctic sea ice. J Clim 29(14):5241–5249. doi:10.1175/JCLI-D-16-0121.1

    Article  Google Scholar 

  • Holland PR, Kwok R (2012) Wind-driven trends in Antarctic sea-ice drift. Nat Geosci 5(12):872–875. doi:10.1038/ngeo1627

    Article  Google Scholar 

  • Hunke EC, Holland MM (2007) Global atmospheric forcing data for Arctic ice-ocean modeling. J Geophys Res 112(C4):1–13. doi:10.1029/2006JC003640

    Article  Google Scholar 

  • Iovino D, Masina S, Storto A, Cipollone A, Stepanov VN (2016) A 1/16\(^\circ\) eddying simulation of the global NEMO sea-ice-ocean system. Geosci Model Dev 9(8):2665–2684. doi:10.5194/gmd-9-2665-2016

    Article  Google Scholar 

  • Ivanova N, Pedersen LT, Tonboe RT, Kern S, Heygster G, Lavergne T, Sørensen A, Saldo R, Dybkjær G, Brucker L, Shokr M (2015) Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations. Cryosphere 9(5):1797–1817. doi:10.5194/tc-9-1797-2015

    Article  Google Scholar 

  • Jones RW, Renfrew IA, Orr A, Webber BGM, Holland DM, Lazzara MA (2016) Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica. J Geophys Res Atmos 121(11):6240–6257. doi:10.1002/2015JD024680

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Am Meteor Soc 77(3):437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Kimura N, Nishimura A, Tanaka Y, Yamaguchi H (2013) Influence of winter sea ice motion on summer ice cover in the Arctic. Polar Res 32(20):193. doi:10.3402/polar.v32i0.20193

    Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J Meteorol Soc Jpn 93(1):5–48. doi:10.2151/jmsj.2015-001

    Article  Google Scholar 

  • Kurtz NT, Markus T (2012) Satellite observations of Antarctic sea ice thickness and volume. J Geophys Res 117(C8):C08,025. doi:10.1029/2012JC008141

    Article  Google Scholar 

  • Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. Tech. rep., National Center for Atmospheric Research, Boulder

    Google Scholar 

  • Lecomte O, Goosse H, Fichefet T, Holland P, Uotila P, Zunz V, Kimura N (2016) Impact of surface wind biases on the Antarctic sea ice concentration budget in climate models. Ocean Modell 105:60–70. doi:10.1016/j.ocemod.2016.08.001

    Article  Google Scholar 

  • Lefebvre W, Goosse H (2005) Influence of the Southern Annular Mode on the sea ice-ocean system: the role of the thermal and mechanical forcing. Ocean Sci 1(3):145–157. doi:10.5194/os-1-145-2005

    Article  Google Scholar 

  • Lefebvre W, Goosse H, Timmermann R, Fichefet T (2004) Influence of the Southern Annular Mode on the sea ice-ocean system. J Geophys Res 109(C9):1–12. doi:10.1029/2004JC002403

    Article  Google Scholar 

  • Lindsay R, Wensnahan M, Schweiger A, Zhang J (2014) Evaluation of seven different atmospheric reanalysis products in the Arctic. J Clim 27(7):2588–2606. doi:10.1175/JCLI-D-13-00014.1

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Paver CR, Reagan JR, Johnson DR, Hamilton M, Seidov D (2013) World Ocean Atlas 2013 Volume 1: Temperature. In: Levitus S (ed) mishonov technical ed., noaa atlas nesdis. National Centers for Environmental Information, p 73, 40

  • Lüpkes C, Gryanik VM, Hartmann J, Andreas EL (2012) A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models. J Geophys Res 117(D13):D13,112. doi:10.1029/2012JD017630

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pôle de modélisation 27. Institut Pierre-Simon Laplace, France, iSSN No 1288-1619

  • Madec G, Imbard M (1996) A global ocean mesh to overcome the North Pole singularity. Clim Dyn 12(6):381–388. doi:10.1007/BF00211684

    Article  Google Scholar 

  • Massonnet F, Fichefet T, Goosse H, Vancoppenolle M, Mathiot P, König Beatty C (2011) On the influence of model physics on simulations of Arctic and Antarctic sea ice. Cryosphere 5(3):687–699. doi:10.5194/tc-5-687-2011

    Article  Google Scholar 

  • Massonnet F, Mathiot P, Fichefet T, Goosse H, König Beatty C, Vancoppenolle M, Lavergne T (2013) A model reconstruction of the Antarctic sea ice thickness and volume changes over 1980–2008 using data assimilation. Ocean Modell 64:67–75. doi:10.1016/j.ocemod.2013.01.003

    Article  Google Scholar 

  • Merino N, Le Sommer J, Durand G, Jourdain NC, Madec G, Mathiot P, Tournadre J (2016) Antarctic icebergs melt over the Southern Ocean: climatology and impact on sea ice. Ocean Modell 104:99–110. doi:10.1016/j.ocemod.2016.05.001

    Article  Google Scholar 

  • Nihashi S, Ohshima KI (2015) Circumpolar mapping of antarctic coastal polynyas and landfast sea ice: relationship and variability. J Clim 28(9):3650–3670. doi:10.1175/JCLI-D-14-00369.1

    Article  Google Scholar 

  • Pellichero V, Sallée JB, Schmidtko S, Roquet F, Charrassin JB (2017) The ocean mixed layer under Southern Ocean sea-ice: seasonal cycle and forcing. J Geophys Res Oceans 122(2):1608–1633. doi:10.1002/2016JC011970

    Article  Google Scholar 

  • Rousset C, Vancoppenolle M, Madec G, Fichefet T, Flavoni S, Barthélemy A, Benshila R, Chanut J, Levy C, Masson S, Vivier F (2015) The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities. Geosci Model Dev 8(10):2991–3005. doi:10.5194/gmd-8-2991-2015

    Article  Google Scholar 

  • Schroeter S, Hobbs W, Bindoff NL (2017) Interactions between Antarctic sea ice and large-scale atmospheric modes in CMIP5 models. Cryosphere 11(2):789–803. doi:10.5194/tc-11-789-2017

    Article  Google Scholar 

  • Shu Q, Song Z, Qiao F (2015) Assessment of sea ice simulations in the CMIP5 models. Cryosphere 9(1):399–409. doi:10.5194/tc-9-399-2015

    Article  Google Scholar 

  • Stössel A, Zhang Z, Vihma T (2011) The effect of alternative real-time wind forcing on Southern Ocean sea ice simulations. J Geophys Res 116(C11):1–19. doi:10.1029/2011JC007328

    Article  Google Scholar 

  • Timmermann R, Worby A, Goosse H, Fichefet T (2004) Utilizing the ASPeCt sea ice thickness data set to evaluate a global coupled sea ice-ocean model. J Geophys Res 109(C7):1–10. doi:10.1029/2003JC002242

    Article  Google Scholar 

  • Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Valérie D (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice-cean model. Ocean Modell 8(1–2):175–201. doi:10.1016/j.ocemod.2003.12.009

    Article  Google Scholar 

  • Tonboe RT, Eastwood S, Lavergne T, Sørensen AM, Rathmann N, Dybkjær G, Pedersen LT, Høyer JL, Kern S (2016) The EUMETSAT sea ice concentration climate data record. Cryosphere 10(5):2275–2290. doi:10.5194/tc-10-2275-2016

    Article  Google Scholar 

  • Trenberth KE, Large WG, Olson JG (1989) Global Ocean Wind Stress, climatology and monthly, by Trenberth et al. Digital media. National Center for Atmospheric Research, Boulder

  • Tsamados M, Feltham DL, Wilchinsky AV (2013) Impact of a new anisotropic rheology on simulations of Arctic sea ice. J Geophys Res Oceans 118(1):91–107. doi:10.1029/2012JC007990

    Article  Google Scholar 

  • Tsamados M, Feltham DL, Schroeder D, Flocco D, Farrell SL, Kurtz N, Laxon SW, Bacon S (2014) Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice. J Phys Oceanogr 44(5):1329–1353. doi:10.1175/JPO-D-13-0215.1

    Article  Google Scholar 

  • Turner J, Bracegirdle TJ, Phillips T, Marshall GJ, Hosking JS (2013) An initial assessment of antarctic sea ice extent in the CMIP5 models. J Clim 26(5):1473–1484. doi:10.1175/JCLI-D-12-00068.1

    Article  Google Scholar 

  • Turner J, Hosking JS, Marshall GJ, Phillips T, Bracegirdle TJ (2016) Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea Low. Clim Dyn 46(7):2391–2402. doi:10.1007/s00382-015-2708-9

    Article  Google Scholar 

  • Uotila P, O’Farrell S, Marsland S, Bi D (2012) A sea-ice sensitivity study with a global ocean-ice model. Ocean Modell 51:1–18. doi:10.1016/j.ocemod.2012.04.002

    Article  Google Scholar 

  • Uotila P, Holland P, Vihma T, Marsland S, Kimura N (2014) Is realistic Antarctic sea-ice extent in climate models the result of excessive ice drift? Ocean Modell 79:33–42. doi:10.1016/j.ocemod.2014.04.004

    Article  Google Scholar 

  • Uotila P, Iovino D, Vancoppenolle M, Lensu M, Rousset C (2017) Comparing sea ice, hydrography and circulation between NEMO3.6 LIM3 and LIM2. Geosci Model Dev 10(2):1009–1031. doi:10.5194/gmd-10-1009-2017

    Article  Google Scholar 

  • Vancoppenolle M, Fichefet T, Goosse H, Bouillon S, Madec G, Morales Maqueda MA (2009) Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modell 27(1–2):33–53. doi:10.1016/j.ocemod.2008.10.005

    Article  Google Scholar 

  • Vancoppenolle M, Timmermann R, Ackley SF, Fichefet T, Goosse H, Heil P, Leonard KC, Lieser J, Nicolaus M, Papakyriakou T, Tison JL (2011) Assessment of radiation forcing data sets for large-scale sea ice models in the Southern Ocean. Deep-Sea Res Pt II 58(9–10):1237–1249. doi:10.1016/j.dsr2.2010.10.039

    Article  Google Scholar 

  • Vihma T, Uotila J, Cheng B, Launiainen J (2002) Surface heat budget over the Weddell Sea: Buoy results and model comparisons. J Geophys Res 107(C2):5–1–5–15. doi:10.1029/2000JC000372

    Article  Google Scholar 

  • Wang Y, Zhou D, Bunde A, Havlin S (2016) Testing reanalysis data sets in Antarctica: Trends, persistence properties, and trend significance. J Geophys Res Atmos 121(21):12,839–12,855. doi:10.1002/2016JD024864

    Article  Google Scholar 

  • Wilchinsky AV, Heorton HDBS, Feltham DL, Holland PR (2015) Study of the impact of ice formation in leads upon the sea ice pack mass balance using a new frazil and grease ice parameterization. J Phys Oceanogr 45(8):2025–2047. doi:10.1175/JPO-D-14-0184.1

    Article  Google Scholar 

  • Worby AP, Geiger CA, Paget MJ, Van Woert ML, Ackley SF, DeLiberty TL (2008) Thickness distribution of Antarctic sea ice. J Geophys Res 113(C5):C05S92. doi:10.1029/2007JC004254

    Google Scholar 

  • Zunz V, Goosse H, Massonnet F (2013) How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? Cryosphere 7(2):451–468. doi:10.5194/tc-7-451-2013

    Article  Google Scholar 

  • Zweng M, Reagan J, Antonov J, Locarnini R, Mishonov A, Boyer T, Garcia H, Baranova O, Johnson D, DSeidov, Biddle M (2013) World Ocean Atlas 2013, Volume 2: Salinity. In: Levitus S (ed) mishonov technical ed., noaa atlas nesdis a. National Centers for Environmental Information, p 74, 39

Download references

Acknowledgements

We thank two anonymous reviewers for their valuable comments on the original manuscript. H. G. and O. L. are respectively Research Director and Postdoctoral Researcher with the Fonds de la Recherche Scientifique (F.R.S.-FNRS/Belgium). This work was supported by the F.R.S.-FNRS research project “Amélioration de la représentation de la glace de mer antarctique dans les modèles climatiques grâce à? une meilleure compréhension des processus gouvernant son état moyen et sa variabilité”, under grant agreement T.0007.14. Computational resources have been provided by the supercomputing facilities of the Université catholique de Louvain (CISM/UCL) and the Consortium des Equipements de Calcul Intensif en Fédération Wallonie Bruxelles (CECI) funded by the F.R.S.-FNRS under convention 2.5020.11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Barthélemy.

Appendix: Ocean vertical resolution

Appendix: Ocean vertical resolution

As noted in Sect. 2.3, the vertical resolution of the ocean in the present model configuration is higher than in most previous studies. Usually, the ORCA1 grid has indeed been used with 46 layers, whose thicknesses range from 6 m at the surface to 20  at 100 m depth, and to 250 m for the bottommost layer. For comparison, at the same depths, the layer thicknesses in the eORCA1 grid with 75 levels are 1, 10 and 200 m. In this appendix, we examine the effects of this change. To this end, an additional experiment is conducted, named LVR. It is the exact equivalent of DFS except for its lower vertical resolution.

Fig. 13
figure 13

Differences in September sea ice concentration (left) and thickness (right) between experiments LVR and DFS (LVR-DFS), averaged over 1985–2014

As seen in Fig. 1, changing the ocean model vertical resolution has a negligible effect on the summer Antarctic sea ice extent. Regional differences in ice concentration between experiments LVR and DFS actually exist during the melting season, but they are small and they compensate each other in the total sea ice extent. By contrast, the latter is clearly reduced during the expansion period, by up to 2 \(\times\) 10\(^6\) km\(^2\), even though the ocean-sea ice model is used in forced mode. The strongest decrease in ice concentration takes place close to 130\(^\circ\)W (Fig. 13), a region where DFS already underestimated the sea ice area compared to observations. Furthermore, concentrations are lower inside the ice pack in LVR, but they remain nevertheless higher than satellite estimates.

In spite of a smaller extent, the sea ice volume in experiment LVR is larger than in DFS (Fig. 1). The difference peaks at 3 \(\times\) 10\(^3\) km\(^3\) in October, and a fraction of it persists throughout the year. It is related to an ice thickening of up to a few tens of centimeters in LVR, in most regions but the southern and southwestern parts of the Weddell Sea, where a slight thinning occurs (Fig. 13).

These changes between the simulations with different vertical resolutions are explained by how the model handles new ice formation in open waters. In conditions of ice growth, the open water heat loss to the atmosphere is split into two parts (Barthélemy et al. 2016a). The first one is used to lower the temperature of the top oceanic grid cell to the freezing point. The remaining heat loss must then be compensated by latent heat released by seawater freezing, which is associated with expansion of ice in the open water fraction of the grid cell. The thickness of the first ocean layer being 1 m in DFS and 6 m in LVR, at equivalent ocean temperature, more energy is needed in LVR to cool the surface down to the freezing point, and less energy is left for sea ice formation in open waters. This is the reason why ice concentrations are lower in LVR than in DFS. The lesser contribution of thermodynamic processes to the expansion of sea ice in LVR is indeed visible in the winter ice concentration budget based on online model diagnostics (not shown).

Fig. 14
figure 14

August ocean temperature profiles, averaged over 1985–2014 and south of 65\(^\circ\)S, in the WOA13 climatology (Locarnini et al. 2013) and in experiments DFS and LVR. The horizontal lines show the simulated mean mixed layer depths

Subsequently, convection due to surface cooling and brine rejection from ice growth will homogenize the winter mixed layer. Since a thicker ocean layer needed to be cooled in LVR to allow for ice formation in open waters, the temperature of the mixed layer will become lower in this simulation. This is visible in the mean August temperature profiles displayed in Fig. 14. Close to the surface and on average south of 65\(^\circ\)S, LVR is about 0.05 \(^\circ\)C colder than DFS, with a larger difference at greater depths. A lower sea surface temperature implies a smaller oceanic heat flux to the ice base. In August, just before the sea ice maximum, the mean heat flux is reduced by half in the low resolution case (not shown). Differences of several tens of W m\(^{-2}\) occur along the ice edge, where the flux is the highest in DFS due to relatively warm waters. In turn, the decreased oceanic heat supply to the ice in LVR explains the increase in ice thickness in this experiment.

Finally, the simulated mixed layers are deeper in LVR, as a consequence of the surface cooling and of enhanced brine rejection linked to larger sea ice production. On average south of 65\(^\circ\)S, the difference between the two simulations amounts to 15 m. While LVR appears to be in better agreement with WOA13 temperature profiles, the increase in mixed layer depth enhances the deep bias already present in DFS with respect to an observation-based climatology (Pellichero et al. 2017).

Based on this understanding of the first order effects of a reduced vertical resolution, we can re-examine the spatial patterns of changes in Fig. 13. The fact that sea ice is not thicker in LVR in the southern parts of the Weddell Sea can be explained by ocean temperatures close to the freezing point in that area, implying that the process described above does not play an active role there. By contrast, subsurface temperatures are the highest in the Amundsen Sea. In this region, the vertical mixing induced by new ice production at low resolution causes a upward heat transport which offsets the initial cooling. Higher surface temperatures decrease strongly the sea ice concentration and prevent the ice thickening visible elsewhere.

Depending on the variable considered, the best agreement with observations is provided by either DFS or LVR. More importantly, these results demonstrate that changing the vertical resolution of a model could require adjusting the treatment of some physical processes as well. The issue is similar to that of the increase in the horizontal resolution of ocean models, in which the eddy parameterizations must be adapted when the simulations become eddy-resolving (e.g., Iovino et al. 2016). In our case, it is not realistic that only the 1 m surface layer of the ocean is associated with new sea ice formation in DFS. In reality, turbulent mixing continuously mixes the upper water layer, over a thickness larger than than 1 m, thereby coupling it with the freezing taking place at the surface. Even if vertical mixing is realistically simulated, connections between the surface and the second ocean layer (and the deeper ones) can only occur at the model time step frequency. The results described above suggest that a more advanced representation of the formation of new ice in open waters (e.g., Wilchinsky et al. 2015; Barthélemy et al. 2016b) might help reduce the modeled winter sea ice concentrations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barthélemy, A., Goosse, H., Fichefet, T. et al. On the sensitivity of Antarctic sea ice model biases to atmospheric forcing uncertainties. Clim Dyn 51, 1585–1603 (2018). https://doi.org/10.1007/s00382-017-3972-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3972-7

Keywords

Navigation