Skip to main content
Log in

Peak oxygen uptake

Myth and truth about an internationally accepted reference value

Die maximale Sauerstoffaufnahme—Schein und Sein eines international anerkannten Referenzwertes

  • ORIGINAL PAPER
  • Published:
Zeitschrift für Kardiologie Aims and scope Submit manuscript

Zusammenfassung

Dieser Beitrag beschäftigt sich kritisch mit der Durchführung von Messungen der maximalen Sauerstoffaufnahme (VO2peak) bei Herzpatienten und hinterfragt deren angemessene Interpretation. Im ersten Abschnitt werden die häufigsten klinischen Anwendungen von VO2peak-Messungen diskutiert: Abschätzung der funktionellen Kapazität sowie ihrer Veränderungen, Beurteilung der Notwendigkeit invasiver diagnostischer bzw. therapeutischer Maßnahmen, Bezugspunkt für Trainingsvorgaben und Prognosestellung. Der zweite Abschnitt befasst sich mit wichtigen methodischen Problemen und Einschränkungen, die anhand von wissenschaftlichen Studien illustriert sind. Schließlich werden Empfehlungen für möglichst aussagekräftige VO2-peak-Messungen abgeleitet. Es wird deutlich, dass irreführende ergometrische Befunde möglich sind, wenn man sich nicht streng an solche Vorgaben hält. Dies kann zu Über- oder Unterschätzungen sowohl der Ausdauerleistungsfähigkeit als auch vermeintlicher Trainingseffekte führen.

Summary

This article critically examines the execution of VO2-peak testing in cardiac patients and questions their appropriate interpretation. In the first part, the most common clinical implications of VO2peak measurements are discussed: assessment of (changes in) functional capacity, evaluation of the necessity of invasive diagnostic/therapeutic measures, reference for exercise prescriptions, determination of prognosis. In the second part, important methodological problems and constraints are addressed and illustrated by references to scientific studies. Finally, recommendations are given for meaningful VO2peak testing. It is evident that failure to strictly follow such recommendations might result in misleading ergometric findings and, thus, in over- or underestimation of endurance capacity and/ or training effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adamopoulos S, Coats AJ, Brunotte F, Arnolda L, Meyer T, Thompson CH, Dunn JF, Stratton J, Kemp GJ, Radda GK (1993) Physical training improves skeletal muscle metabolism in patients with chronic heart failure. J Am Coll Cardiol 21:1101–1106

    Google Scholar 

  2. Arbeitsgruppe Thorakale Organtransplantation der Deutschen Gesellschaft für Kardiologie (1996) Indikationen, Kontraindikationen und differentialtherapeutische Alternativen der Herztransplantation [Indications, contraindications and differential therapeutic alternatives in heart transplantation]. Z Kardiol 85:519–527

    Google Scholar 

  3. Atkinson G (2003) What is this thing called measurement error? In: Reilly TM, Marfell-Jones M (eds) Kinanthropometry VIII: Proceedings of the 8th International Conference of the International Society for the Advancement of Kinanthropometry (ISAK). Taylor & Francis, London, pp 3–14

  4. Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26:217–238

    CAS  PubMed  Google Scholar 

  5. Baba R, Tsuyuki K, Kimura Y, Ninomiya K, Aihara M, Ebine K, Tauchi N, Nishibata K, Nagashima M (1999) Oxygen uptake efficiency slope as a useful measure of cardiorespiratory functional reserve in adult cardiac patients. Eur J Appl Physiol 80:397–401

    Google Scholar 

  6. Babineau C, Léger L, Long A, Bosquet L (1999) Variability of maximum oxygen consumption measurement in various metabolic systems. J Strength Cond Res 13:318–324

    Google Scholar 

  7. Bagger M, Petersen PH, Pedersen PK (2003) Biological variation in variables associated with exercise training. Int J Sports Med 24:433–440

    Google Scholar 

  8. Behrens S, Andresen D, Bruggemann T, Ehlers C, Schroder R (1994) Reproduzierbarkeit der symptomlimitierten Sauerstoffaufnahme und der anaeroben Schwelle im Rahmen spiroergometrischer Untersuchungen bei Patienten mit Herzinsuffizienz [Reproducibility of symptom-limited oxygen consumption and anaerobic threshold within the scope of spiroergometric studies in patients with heart failure]. Z Kardiol 83:44–49

    Google Scholar 

  9. Belardinelli R, Georgiou D, Cianci G, Berman N, Ginzton L, Purcaro A (1995) Exercise training improves left ventricular diastolic filling in patients with dilated cardiomyopathy. Clinical and prognostic implications. Circulation 91:2775–2784

    Google Scholar 

  10. Belardinelli R, Georgiou D, Cianci G, Purcaro A (1999) Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation 99:1173–1182

    Google Scholar 

  11. Belardinelli R, Georgiou D, Scocco V, Barstow TJ, Purcaro A (1995) Low intensity exercise training in patients with chronic heart failure. J Am Coll Cardiol 26:975–982

    Google Scholar 

  12. Belardinelli R, Scocco V, Mazzanti M, Purcaro A (1992) Effects of aerobic training in patients with moderate chronic heart failure. G Ital Cardiol 22:919–930

    Google Scholar 

  13. Bergh U, Sjodin B, Forsberg A, Svedenhag J (1991) The relationship between body mass and oxygen uptake during running in humans. Med Sci Sports Exerc 23:205–211

    Google Scholar 

  14. Bevegard S, Holmgren A, Jonsson B (1963) Circulatory studies in well trained athletes at rest and during heavy exercise, with special reference to stroke volume and the influence of body position. Acta physiol scand 57:26–50

    Google Scholar 

  15. Borg G, Noble B (1974) Perceived exertion. Exerc Sports Sci Rev 2:131–153

    Google Scholar 

  16. Bosquet L, Léger L, Legros P (2002) Methods to determine aerobic endurance. Sports Med 32:675–700

    Google Scholar 

  17. Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ (1983) Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol 55:1558–1564

    Google Scholar 

  18. Bunc V, Heller J, Leso J (1988) Kinetics of heart rate responses to exercise. J Sports Sci 6:39–48

    Google Scholar 

  19. Cardiology TFotESo (1997) Management of stable angina pectoris. Eur Heart J 18:394–413

    Google Scholar 

  20. Coats AJ, Adamopoulos S, Meyer TE, Conway J, Sleight P (1990) Effects of physical training in chronic heart failure. Lancet 335:63–66

    Google Scholar 

  21. Coats AJ, Adamopoulos S, Radaelli A, McCance A, Meyer TE, Bernardi L, Solda PL, Davey P, Ormerod O, Forfar C (1992) Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85:2119–2131

    Google Scholar 

  22. Cohen-Solal A, Gourgon R (1991) Assessment of exercise tolerance in chronic congestive heart failure. Am J Cardiol 67:36c–40c

    Google Scholar 

  23. Cumming GR, Borsyk LM (1972) Criteria for maximum oxygen uptake in men over 40 in a population survey. Med Sci Sports Exerc 4:18–20

    Google Scholar 

  24. Davies B, Dagget A, Jakeman P, Mulhall J (1984) Maximum oxygen uptake utilizing different treadmill protocols. Br J Sports Med 18:74–79

    Google Scholar 

  25. Dobeln WV, Astrand I, Bergstrom A (1967) An analysis of age and other factors related to maximal oxygen uptake. J Appl Physiol 22:934–938

    Google Scholar 

  26. Doherty M, Nobbs L, Noakes TD (2003) Low frequency of the “plateau phenomenon during maximal in elite Britilsh athletes. Eur J Appl Physiol 89:619–623

    Google Scholar 

  27. Dubach P, Myers J, Dziekan G, Goebbels U, Reinhart W, Vogt P, Ratti R, Muller P, Miettunen R, Buser P (1997) Effect of exercise training on myocardial remodeling in patients with reduced left ventricular function after myocardial infarction: application of magnetic resonance imaging. Circulation 95:2060–2067

    Google Scholar 

  28. Duncan GE, Howley ET, Johnson BN (1997) Applicability of VO2max criteria: discontinuous versus continuous protocols. Med Sci Sports Exerc 29:273–278

    CAS  PubMed  Google Scholar 

  29. Faude O, Meyer T, Kindermann W (2001) Work rates at ventilatory threshold during ramp versus constant load exercise. In: Mester J, King G, Strüder H, Tsolakidis E, Osterburg A (eds) Book of Abstracts, 6th Annual Congress of the European College of Sport Science. Sport und Buch Strauss, Köln, p 267

  30. Franciosa JA, Leddy CL, Wilen M, Schwartz DE (1984) Relation between hemodynamic and ventilatory responses in determining exercise capacity in severe congestive heart failure. Am J Cardiol 53:127–134

    Google Scholar 

  31. Franciosa JA, Park M, Levine TB (1981) Lack of correlation between exercise capacity and indexes of resting left ventricular performance in heart failure. Am J Cardiol 47:33–39

    Article  CAS  PubMed  Google Scholar 

  32. Franciosa JA, Ziesche S, Wilen M (1979) Functional capacity of patients with chronic left ventricular failure. Relationship of bicycle exercise performance to clinical and hemodynamic characterization. Am J Med 67:460–466

    Google Scholar 

  33. Froelicher VF Jr, Brammell H, Davis G, Noguera I, Stewart A, Lancaster MC (1974) A comparison of the reproducibility and physiologic response to three maximal treadmill exercise protocols. Chest 65:512–517

    Google Scholar 

  34. Gardner RS, Ozalp F, Murday AJ, Robb SD, McDonagh TA (2003) N-terminal pro-brain natriuretic peptide. A new gold standard in predicting mortality in patients with advanced heart failure. Eur Heart J 24:1735–1743

    Article  CAS  PubMed  Google Scholar 

  35. Gibbons L, Blair SN, Kohl HW, Cooper K (1989) The safety of maximal exercise testing. Circulation 80:846–852

    Google Scholar 

  36. Gitt AK, Wasserman K, Kilkowski C, Kleemann T, Kilkowski A, Bangert M, Schneider S, Schwarz A, Senges J (2002) Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. Circulation 106:3079–3084

    Google Scholar 

  37. Guyatt GH, Thompson PJ, Berman LB, Sullivan MJ, Townsend M, Jones NL, Pugsley SO (1985) How should we measure function in patients with chronic heart and lung disease? J Chronic Dis 38:517–524

    Google Scholar 

  38. Haass M, Zugck C, Kubler W (2000) Der 6-Minuten-Gehtest: Eine kostengünstige Alternative zur Spiroergometrie bei Patienten mit chronischer Herzinsuffizienz? [The 6 minute walking test: a cost-effective alternative to spiro-ergometry in patients with chronic heart failure?]. Z Kardiol 89:72–80

    Google Scholar 

  39. Hambrecht R, Niebauer J, Fiehn E, Kalberer B, Offner B, Hauer K, Riede U, Schlierf G, Kubler W, Schuler G (1995) Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol 25:1239–1249

    Google Scholar 

  40. Hansen JE, Casaburi R, Cooper DM, Wasserman K (1988) Oxygen uptake as related to work rate increment during cycle ergometer exercise. Eur J Appl Physiol 57:140–145

    Google Scholar 

  41. Hansen JE, Sue DY, Oren A, Wasserman K (1987) Relation of oxygen uptake to work rate in normal men and men with circulatory disorders. Am J Cardiol 59:669–674

    Google Scholar 

  42. Hawley JA, Noakes TD (1992) Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol 65:79–83

    CAS  PubMed  Google Scholar 

  43. Heil DP (1997) Body mass scaling of peak oxygen uptake in 20- to 79-yrold adults. Med Sci Sports Exerc 29:1602–1608

    CAS  PubMed  Google Scholar 

  44. Hermansen L, Saltin B (1969) Oxygen uptake during maximal treadmill and bicycle exercise. J Appl Physiol 26:31–37

    CAS  PubMed  Google Scholar 

  45. Hill AV, Lupton H (1923) Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q J Med 16:135–171

    Google Scholar 

  46. Hill DW, Stephens LP, Blumoff-Ross SA, Poole DC, Smith JC (2003) Effect of sampling strategy on measures of VO2peak obtained using commercial breath-by-breath systems. Eur J Appl Physiol 89:564–569

    Google Scholar 

  47. Howley ET, Bassett DR, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27:1292–1301

    CAS  PubMed  Google Scholar 

  48. Hunt HA, Baker DW, Chin MH, Cinquegrani MP, Feldmanmd AM, Francis GS, Ganiats TG, Goldstein S, Gregoratos G, Jessup ML, Noble RJ, Packer M, Silver MA, Stevenson LW, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Jacobs AK, Hiratzka LF, Russell RO, Smith SC Jr (2001) ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary. Circulation 104:2996–3007

    CAS  PubMed  Google Scholar 

  49. Issekutz B Jr, Birkhead NC, Rodahl K (1962) Use of respiratory quotients in assessment of aerobic work capacity. J Appl Physiol 17:47–50

    Google Scholar 

  50. Jette M, Heller R, Landry F, Blumchen G (1991) Randomized 4-week exercise program in patients with impaired left ventricular function. Circulation 84:1561–1567

    Google Scholar 

  51. Katch V, Weltman A, Sady S, Freedson P (1978) Validity of the relative percent concept for equating training intensity. Eur J Appl Physiol 39:219–227

    Google Scholar 

  52. Katch VL, Sady S, Freedson P (1982) Biological variability in maximum aerobic power. Med Sci Sports Exerc 14:21–25

    Google Scholar 

  53. Keteyian SJ, Levine AB, Brawner CA, Kataoka T, Rogers FJ, Schairer JR, Stein PD, Levine TB, Goldstein S (1996) Exercise training in patients with heart failure. A randomized, controlled trial. Ann Intern Med 124:1051–1057

    Google Scholar 

  54. Krüger S, Graf J, Kunz D, Stickel T, Hanrath P, Janssens U (2002) Brain natriuretic peptide levels predict functional capacity in patients with chronic heart failure. J Am Coll Cardiol 40:718–722

    Google Scholar 

  55. Larsen AI, Aarsland T, Kristiansen M, Haugland A, Dickstein K (2001) Assessing the effect of exercise training in men with heart failure; comparison of maximal, submaximal and endurance exercise protocols. Eur Heart J 22:684–692

    Google Scholar 

  56. Le Jemtel TH, Mancini D, Gumbardo D, Chadwick B (1985) Pitfalls and limitations of “maximal” oxygen uptake as an index of cardiovascular functional capacity in patients with chronic heart failure. Heart Failure May/June: 112–124

  57. Lear SA, Brozic A, Myers JN, Ignaszewski A (1999) Exercise stress testing—an overview of current guidelines. Sports Med 27:285–312

    Google Scholar 

  58. Lehmann G, Kolling K (1996) Reproducibility of cardiopulmonary exercise parameters in patients with valvular heart disease. Chest 110:685–692

    Google Scholar 

  59. Londeree BR, Moeschberger ML (1984) Influence of age and other factors on maximal heart rate. J Cardiac Rehabil 4:44–49

    Google Scholar 

  60. Maiorana A, O’Driscoll G, Cheetham C, Collis J, Goodman C, Rankin S, Taylor R, Green D (2000) Combined aerobic and resistance exercise training improves functional capacity and strength in CHF. J Appl Physiol 88:1565–1570

    Google Scholar 

  61. Mancini D, LeJemtel T, Aaronson K (2000) Peak VO2: a simple yet enduring standard. Circulation 101:1080–1082

    Google Scholar 

  62. Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH Jr, Wilson JR (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83:778–786

    Google Scholar 

  63. Marburger CT, Brubaker PH, Pollock WE, Morgan TM, Kitzman DW (1998) Reproducibility of cardiopulmonary exercise testing in elderly patients with congestive heart failure. Am J Cardiol 82:905–909

    Google Scholar 

  64. McConnell TR (1988) Practical considerations in the testing of VO2max in runners. Sports Med 5:57–68

    Google Scholar 

  65. McConnell TR, Clark BA, Conlin NC, Haas JH (1993) Gas exchange anaerobic threshold—implications for prescribing exercise in cardiac rehabilitation. J Cardiopulm Rehabil 13:31–36

    Google Scholar 

  66. McLellan TM, Skinner JS (1981) The use of the aerobic threshold as a basis for training. Can J Appl Sport Sci 6:197–201

    Google Scholar 

  67. Mejhert M, Linder-Klingsell E, Edner M, Kahan T, Persson H (2002) Ventilatory variables are strong prognostic markers in elderly patients with heart failure. Heart 88:239–243

    Google Scholar 

  68. Meyer K, Samek L, Schwaibold M, Westbrook S, Hajric R, Beneke R, Lehmann M, Roskamm H (1997) Interval training in patients with severe chronic heart failure: analysis and recommendations for exercise procedures. Med Sci Sports Exerc 29:306–312

    Google Scholar 

  69. Meyer K, Schwaibold M, Hajric R, Westbrook S, Ebfeld D, Leyk D, Roskamm H (1998) Delayed VO2 kinetics during ramp exercise: a criterion for cardiopulmonary exercise capacity in chronic heart failure. Med Sci Sports Exerc 30:643–648

    Google Scholar 

  70. Meyer T, Gabriel HHW, Kindermann W (1999) Is determination of exercise intensities as percentages of VO2max or HRmax adequate? Med Sci Sports Exerc 31:1342–1345

    Article  CAS  PubMed  Google Scholar 

  71. Meyer T, Görge G, Schwaab B, Hildebrandt K, Walldorf J, Schäfer C, Kindermann I, Scharhag J, Kindermann W (2005) An alternative approach for exercise prescription and efficacy testing in patients with chronic heart failure—A randomized controlled training study. Am Heart J 149 (in press)

  72. Meyer T, Kindermann M, Kindermann W (2004) Exercise programs for patients with chronic heart failure—Training methods and effects on endurance capacity. Sports Med 34:939–954

    Google Scholar 

  73. Meyer T, Schwaab B, Görge G, Scharhag J, Herrmann M, Kindermann W (2004) Can serum NT-proBNP detect changes of functional capacity in patients with chronic heart failure? Z Kardiol 93:540–545

    Google Scholar 

  74. Meyer T, Urhausen A, Kindermann W (1999) Kardiovaskuläre und metabolische Beanspruchung der dynamischen Streßechokardiographie bei Patienten mit koronarer Herzkrankheit und bei Gesunden [Cardiovascular and metabolic response to dynamic stress echocardiography by patients with coronary heart disease and healthy subjects]. Z Kardiol 88:473–480

    Google Scholar 

  75. Miles DS, Cox MH, Verde TJ (1994) Four commonly utilized metabolic systems fail to produce similar results during submaximal and maximal exercise. Sport Med Train Rehab 5:189–198

    Google Scholar 

  76. Mitchell HH, Sproule BJ, Chapman CB (1958) The physiological meaning of the maximal oxygen intake test. J Clin Invest 37:538–547

    Google Scholar 

  77. Mitchell JH, Blomqvist G (1971) Maximal oxygen uptake. N Engl J Med 284:1018–1022

    Google Scholar 

  78. Myers J (2005) Applications of Cardiopulmonary Exercise Testing in the Management of Cardiovascular and Pulmonary Disease. Int J Sports Med 26 (in press)

  79. Myers J, Bellin D (2000) Ramp exercise protocols for clinical and cardiopulmonary exercise testing. Sports Med 30:23–29

    Google Scholar 

  80. Myers J, Buchanan N, Walsh D, Kraemer M, McAuley P, Hamilton Wessler M, Froelicher VF (1991) Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol 17:1334–1342

    Google Scholar 

  81. Myers J, Gullestad L (1998) The role of exercise testing and gas-exchange measurement in the prognostic assessment of patients with heart failure. Curr Opin Cardiol 13:145–155

    Google Scholar 

  82. Myers J, Gullestad L, Vagelos R, Do D, Bellin D, Ross H, Fowler MB (2000) Cardiopulmonary exercise testing and prognosis in severe heart failure: 14 mL/kg/min revisited. Am Heart J 139:78–84

    Google Scholar 

  83. Myers J, Walsh D, Sullivan M, Froelicher V (1990) Effect of sampling on variability and plateau in oxygen uptake. J Appl Physiol 68:404–410

    Article  CAS  PubMed  Google Scholar 

  84. Nechwatal RM, Duck C, Gruber G (2002) Körperliches Training als Intervall-oder kontinuierliches Training bei chronischer Herzinsuffizienz zur Verbesserung der funktionellen Leistungskapazität, Hämodynamik und Lebensqualität—eine kontrollierte Studie [Exercise training by interval versus steady-state modus in chronic heart failure: improvement of functional capacity, hemodynamics and quality of life—a controlled study]. Z Kardiol 91:328–337

    Google Scholar 

  85. Noakes TD (1997) 1996 J. B. Wolffe Memorial Lecture. Challenging beliefs: ex Africa semper aliquid novi. Med Sci Sports Exerc 29:571–590

    Google Scholar 

  86. Noakes TD (1998) Maximal oxygen uptake: “classical” versus “contemporary” viewpoints: a rebuttal. Med Sci Sports Exerc 30:1381–1398

    Google Scholar 

  87. Opasich C, Pinna GD, Bobbio M, Sisti M, Demichelis B, Febo O, Forni G, Riccardi R, Riccardi PG, Capomolla S, Cobelli F, Tavazzi L (1998) Peak exercise oxygen consumption in chronic heart failure: toward efficient use in the individual patient. J Am Coll Cardiol 31:766–775

    Google Scholar 

  88. Pardaens K, Van Cleemput J, Vanhaecke J, Fagard RH (2000) Peak oxygen uptake better predicts outcome than submaximal respiratory data in heart transplant candidates. Circulation 101:1152–1157

    Google Scholar 

  89. Ponikowski P, Francis DP, Piepoli MF, Davies LC, Chua TP, Davos CH, Florea V, Banasiak W, Poole-Wilson PA, Coats AJ, Anker SD (2001) Circulation 103:967–972

    Google Scholar 

  90. Remme WJ, Swedberg K (2001) Guidelines for the diagnosis and treatment of chronic heart failure. Eur Heart J 22:1527–1560

    Article  CAS  PubMed  Google Scholar 

  91. Rickli H, Kiowski W, Brehm M, Weilenmann D, Schalcher C, Bernheim A, Oechslin E, Brunner-La Rocca HP (2003) Combining low-intensity and maximal exercise test results improves prognostic prediction in chronic heart failure. J Am Coll Cardiol 42:116–122

    Google Scholar 

  92. Roberts JM, Sullivan M, Froelicher VF, Genter F, Myers J (1984) Predicting oxygen uptake from treadmill testing in normal subjects and coronary artery disease patients. Am Heart J 108:1454–1460

    Google Scholar 

  93. Roul G, Moulichon ME, Bareiss P, Gries P, Sacrez J, Germain P, Mossard JM, Sacrez A (1994) Exercise peak VO2 determination in chronic heart failure: is it still of value? Eur Heart J 15:495–502

    Google Scholar 

  94. Shephard RJ (1984) Tests of maximum oxygen intake—a critical review. Sports Med 1:99–124

    Google Scholar 

  95. Shephard RJ, Allen C, Benade AJ, Davies CT, di Prampero PE, Hedman R, Merriman JE, Myhre K, Simmons R (1968) The maximum oxygen intake. An international reference standard of cardiorespiratory fitness. Bull World Health Organ 38:757–764

    Google Scholar 

  96. Simon G, Staiger J, Wehinger A, Kindermann W, Keul J (1978) Echokardiographische Größen des linken Ventrikels, Herzvolumen und Sauerstoffaufnahme [Echocardiographic size of the left ventricle, heart volume and maximal oxygen uptake]. Med Klin 73:1457–1462

    Google Scholar 

  97. Stuart RJ, Ellestad MH (1980) National survey of exercise stress testing facilities. Chest 77:94–97

    Google Scholar 

  98. Sullivan MJ, Higginbotham MB, Cobb FR (1989) Exercise training in patients with chronic heart failure delays ventilatory anaerobic threshold and improves submaximal exercise performance. Circulation 79:324–329

    Google Scholar 

  99. Taylor HL, Buskirk E, Henschel A (1955) Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol 8:73–80

    CAS  PubMed  Google Scholar 

  100. Trappe H-J, Löllgen H (2000) Leitlinien zur Ergometrie [Guidelines for the conduction of ergometries]. Z Kardiol 89:821–837

    Google Scholar 

  101. Tristani FE, Hughes CV, Archibald DG, Sheldahl LM, Cohn JN, Fletcher R (1987) Safety of graded symptom-limited exercise testing in patients with congestive heart failure. Circulation 76:VI54–58

    Google Scholar 

  102. Wasserman K, McIlroy MB (1964) Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 14:844–852

    Article  CAS  PubMed  Google Scholar 

  103. Wasserman K, Whipp BJ, Koyl SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35:236–243

    CAS  PubMed  Google Scholar 

  104. Weber KT, Janicki JS (1985) Cardiopulmonary exercise testing for evaluation of chronic cardiac failure. Am J Cardiol 55:22A–31A

    Google Scholar 

  105. Webster MW, Sharpe DN (1989) Exercise testing in angina pectoris: the importance of protocol design in clinical trials. Am Heart J 117:505–508

    Google Scholar 

  106. Weltman A, Snead D, Seip R, Schurrer R, Weltman J, Rutt R, Rogol A (1990) Percentages of maximal heart rate, heart rate reserve, and VO2max for determining endurance training intensity in male runners. Int J Sports Med 11:218–222

    Google Scholar 

  107. Weltman A, Weltman J, Rutt R, Seip R, Levine S, Snead D, Kaiser D, Rogol A (1989) Percentages of maximal heart rate, heart rate reserve, and VO2peak for determining endurance training intensity in sedentary women. Int J Sports Med 10:212–216

    Google Scholar 

  108. Wielenga RP, Huisveld IA, Bol E, Dunselman PH, Erdman RA, Baselier MR, Mosterd WL (1999) Safety and effects of physical training in chronic heart failure. Results of the Chronic Heart Failure and Graded Exercise study (CHANGE). Eur Heart J 20:872–879

    Google Scholar 

  109. Wilson JR, Rayos G, Yeoh TK, Gothard P, Bak K (1995) Dissociation between exertional symptoms and circulatory function in patients with heart failure. Circulation 92:47–53

    Google Scholar 

  110. Zhang YY, Johnson MC, Chow N, Wasserman K (1991) Effect of exercise testing protocol on parameters of aerobic function. Med Sci Sports Exerc 23:625–630

    Google Scholar 

  111. Zugck C, Haunstetter A, Krüger C, Kell R, Schellberg D, Kübler W, Haass M (2002) Impact of beta-blocker treatment on the prognostic value of currently used risk predictors in congestive heart/failure. J Am Coll Cardiol 39:1615–1622

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, T., Scharhag, J. & Kindermann, W. Peak oxygen uptake. ZS Kardiologie 94, 255–264 (2005). https://doi.org/10.1007/s00392-005-0207-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-005-0207-4

Schlüsselwörter

Key words

Navigation