Skip to main content

Advertisement

Log in

Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study

  • ORIGINAL PAPER
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Summary

Aims

We compared in vivo blood flow and pulsatility after different types of Fontan operation using magnetic resonance imaging.

Material and methods

A total of 37 consecutive patients (mean age 19±7.9 years, 7.3±3.2 years after Fontan operation), 7 with atriopulmonary anastomosis (APC), 18 with intra-atrial lateral tunnel (LTFO) and 12 with extracardiac Fontan (ECFO) were studied using magnetic resonance phase-contrast velocity mapping. Blood flow (volume flow) in the superior vena cava (SVC), inferior vena cava (IVC) and both pulmonary arteries were measured and a pulsatility index was calculated for each vessel.

Results

For all modifications, the blood flow distribution between the SVC and IVC was normal (1 : 2). Patients with APC had a normal pulsatility, a dilated right atrium, partial backward flow in the IVC and physiological blood flow distribution between the pulmonary arteries. LTFO and ECFO patients had no retrograde flow in the IVC, equal blood flow distribution between the pulmonary arteries and very low or absent pulsatility.

Conclusions

MRI allows hemodynamic quantification and characterization of various types of Fontan modifications and may be a valuable tool to predict Fontan failure. Despite showing normal pulsatility, patients with APC have right atrial dilatation and partial backward flow in the IVC, demonstrating suboptimal Fontan circulation. LTFO and ECFO both produce unidirectional antegrade flow in the IVC but pulsatility is very low or absent, which may promote poor pulmonary artery growth and increase of pulmonary vascular resistance contributing to late Fontan failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascuitto RJ, Kydon DW, Ross-Ascuitto NT (2003) Streamlining fluid pathways lessens flow energy dissipation: relevance to atriocavopulmonary connections. Pediatr Cardiol 24(3):249–258

    Article  PubMed  CAS  Google Scholar 

  2. Be’eri E, Maier SE, Landzberg MJ, Chung T, Geva T (1998) In vivo evaluation of Fontan pathway flow dynamics by multidimensional phasevelocity magnetic resonance imaging. Circulation 98(25):2873–2882

    PubMed  CAS  Google Scholar 

  3. Busse R, Fleming I (1998) Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium-derived relaxing factors. J Vasc Res 35(2):73–84

    Article  PubMed  CAS  Google Scholar 

  4. Caputo GR, Kondo C, Masui T, Geraci SJ, Foster E, O’Sullivan MM, Higgins CB (1991) Right and left lung perfusion: in vitro and in vivo validation with oblique-angle, velocity-encoded cine MR imaging. Radiology 180(3):693–698

    PubMed  CAS  Google Scholar 

  5. Clarke CP, Kahn DR, Dufek JH, Sloan H (1968) The effects of nonpulsatile blood flow on canine lungs. Ann Thorac Surg 6(5):450–457

    Article  PubMed  CAS  Google Scholar 

  6. de Leval MR, Kilner P, Gewillig M, Bull C (1988) Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. J Thorac Cardiovasc Surg 96(5):682–695

    PubMed  CAS  Google Scholar 

  7. DiSessa TG, Child JS, Perloff JK, Wu L, Williams RG, Laks H, Friedman WF (1984) Systemic venous and pulmonary arterial flow patterns after Fontan’s procedure for tricuspid atresia or single ventricle. Circulation 70(5):898–902

    PubMed  CAS  Google Scholar 

  8. du Plessis AJ, Chang AC, Wessel DL, Lock JE, Wernovsky G, Newburger JW, Mayer JE Jr (1995) Cerebrovascular accidents following the Fontan operation. Pediatr Neurol 12(3):230–236

    Article  PubMed  CAS  Google Scholar 

  9. Fogel MA, Weinberg PM, Rychik J, Hubbard A, Jacobs M, Spray TL, Haselgrove J (1999) Caval contribution to flow in the branch pulmonary arteries of Fontan patients with a novel application of magnetic resonance presaturation pulse. Circulation 99(9):1215–1221

    PubMed  CAS  Google Scholar 

  10. Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26(3):240–248

    Article  PubMed  CAS  Google Scholar 

  11. Fratz S, Hess J, Schwaiger M, Martinoff S, Stern HC (2002) More accurate quantification of pulmonary blood flow by magnetic resonance imaging than by lung perfusion scintigraphy in patients with fontan circulation. Circulation 106(12):1510–1513

    Article  PubMed  Google Scholar 

  12. Gutberlet M, Hosten N, Abdul-Khaliq H, Rechter S, Vojtovic P, Oellinger H, Ehrenstein T, Vogel M, Alexi-Meshkishvili V, Hetzer R, Felix R (1999) The value of magnetic resonance tomography (MRT) for evaluating ventricular and anastomotic functions in patients with an extra- or intracardiac total cavopulmonary connection (TCPC)-modified Fontan operation. Rofo 171(6):431–441

    PubMed  CAS  Google Scholar 

  13. Hjortdal VE, Emmertsen K, Stenbog E, Frund T, Schmidt MR, Kromann O, Sorensen K, Pedersen EM (2003) Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real-time magnetic resonance flow study. Circulation 108(10):1227–1231

    Article  PubMed  CAS  Google Scholar 

  14. Houlind K, Stenbog EV, Sorensen KE, Emmertsen K, Hansen OK, Rybro L, Hjortdal VE (1999) Pulmonary and caval flow dynamics after total cavopulmonary connection. Heart 81(1):67–72

    PubMed  CAS  Google Scholar 

  15. Khambadkone S, Li J, de Leval MR, Cullen S, Deanfield JE, Redington AN (2003) Basal pulmonary vascular resistance and nitric oxide responsiveness late after Fontan-type operation. Circulation 107(25):3204–3208

    Article  PubMed  CAS  Google Scholar 

  16. Kreutzer G, Galindez E, Bono H, De Palma C, Laura JP (1973) An operation for the correction of tricuspid atresia. J Thorac Cardiovasc Surg 66(4):613–621

    PubMed  CAS  Google Scholar 

  17. Mavroudis C (1978) To pulse or not to pulse. Ann Thorac Surg 25(3):259–271

    Article  PubMed  CAS  Google Scholar 

  18. Mavroudis C, Backer CL, Deal BJ, Johnsrude C, Strasburger J (2001) Total cavopulmonary conversion and maze procedure for patients with failure of the Fontan operation. J Thorac Cardiovasc Surg 122(5):863–871

    Article  PubMed  CAS  Google Scholar 

  19. Mohiaddin RH, Wann SL, Underwood R, Firmin DN, Rees S, Longmore DB (1990) Vena caval flow: assessment with cine MR velocity mapping. Radiology 177(2):537–541

    PubMed  CAS  Google Scholar 

  20. Ninan M, Myers JL (1998) Conversion of the atriopulmonary Fontan connection to a total cavopulmonary connection. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 1:23–30

    PubMed  Google Scholar 

  21. Ovroutski S, Dahnert I, Alexi-Meskishvili V, Nurnberg JH, Hetzer R, Lange PE (2001) Preliminary analysis of arrhythmias after the Fontan operation with extracardiac conduit compared with intra-atrial lateral tunnel. Thorac Cardiovasc Surg 49(6):334–337

    Article  PubMed  CAS  Google Scholar 

  22. Paz R, Mohiaddin RH, Longmore DB (1993) Magnetic resonance assessment of the pulmonary arterial trunk anatomy, flow, pulsatility and distensibility. Eur Heart J 14(11):1524–1530

    PubMed  CAS  Google Scholar 

  23. Qureshi SA, Richheimer R, McKay R, Arnold R (1990) Doppler echocardiographic evaluation of pulmonary artery flow after modified Fontan operation: importance of atrial contraction. Br Heart J 64(4):272–276

    PubMed  CAS  Google Scholar 

  24. Raj JU, Kaapa P, Anderson J (1992) Effect of pulsatile flow on microvascular resistance in adult rabbit lungs. J Appl Physiol 72(1):73–81

    Article  PubMed  CAS  Google Scholar 

  25. Redington AN, Penny D, Shinebourne EA (1991) Pulmonary blood flow after total cavopulmonary shunt. Br Heart J 65(4):213–217

    PubMed  CAS  Google Scholar 

  26. Salim MA, DiSessa TG, Arheart KL, Alpert BS (1995) Contribution of superior vena caval flow to total cardiac output in children. A Doppler echocardiographic study. Circulation 92(7):1860–1865

    PubMed  CAS  Google Scholar 

  27. Sharma S, Ensley AE, Hopkins K, Chatzimavroudis GP, Healy TM, Tam VK, Kanter KR, Yoganathan AP (2001) In vivo flow dynamics of the total cavopulmonary connection from three-dimensional multislice magnetic resonance imaging. Ann Thorac Surg 71(3):889–898

    Article  PubMed  CAS  Google Scholar 

  28. Tatum GH, Sigfusson G, Ettedgui JA, Myers JL, Cyran SE, Weber HS, Webber SA (2006) Pulmonary artery growth fails to match the increase in body surface area after the Fontan operation. Heart 92(4):511–514

    Article  PubMed  CAS  Google Scholar 

  29. Wong T, Davlouros PA, Li W, Millington- Sanders C, Francis DP, Gatzoulis MA (2004) Mechano-electrical interaction late after Fontan operation: relation between P-wave duration and dispersion, right atrial size, and atrial arrhythmias. Circulation 109(19):2319–2325

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Klimes MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimes, K., Abdul-Khaliq, H., Ovroutski, S. et al. Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study. Clin Res Cardiol 96, 160–167 (2007). https://doi.org/10.1007/s00392-007-0470-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-007-0470-z

Key words

Navigation