Skip to main content

Advertisement

Log in

Zinc enhances the number of regulatory T cells in allergen-stimulated cells from atopic subjects

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The trace element zinc is essential for immune function and its regulation. Since zinc deficiency and allergic hyperresponsive reactions are often accompanied, the influence of zinc on allergen-induced cell growth, CD4+ regulatory T (Treg) cell numbers and cytokine expression during allergic immune reactions was investigated.

Methods

Peripheral blood mononuclear cells (PBMCs) from non-atopic and atopic subjects were treated with timothy grass allergen pre-incubated with or without zinc. Proliferation was determined by analyzing the incorporation of 3H-thymidine. Intracellular zinc and Foxp3 levels and cell surface antigens were measured by FACS, cytokine expression by ELISA and real-time PCR.

Results

Incubation with 50 μM zinc sulfate (Zn50) enhances cytosolic zinc concentrations in CD3+ T cells. The data also reveal that the combination of Zn50 plus allergen significantly reduces PBMC proliferation of atopic subjects. Additionally, Zn50 plus allergen enhances Th1 cytokine responses shown by increased interferon (IFN)-γ/interleukin (IL)-10 ratios as well as enhanced tumor necrosis factor-α release. In response to allergen, zinc increases Treg cells and upregulates the mRNA expression of cytotoxic T-lymphocyte antigen-4 in atopic subjects. Interestingly, Zn50 alone leads to an increase of CD4+CD25high(hi)+ cells in atopic and non-atopic subjects.

Conclusions

Zinc may regulate unwanted hyperresponsive immune reactions by suppressing proliferation through a significant shift from IL-10 to the Th1 cytokine IFN-γ, and enhanced regulatory T cell numbers. Therefore, zinc supplementation may be a promising tool for the therapy of allergies, without negatively affecting the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maywald M, Rink L (2015) Zinc homeostasis and immunosenescence. J Trace Elem Med Biol 29:24–30

    Article  CAS  Google Scholar 

  2. Haase H, Rink L (2014) Zinc signals and immune function. BioFactors 40:27–40

    Article  CAS  Google Scholar 

  3. Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5:196–201

    Article  CAS  Google Scholar 

  4. Ibs KH, Rink L (2003) Zinc-altered immune function. J Nutr 133:1452S–1456S

    CAS  Google Scholar 

  5. Prasad AS (2009) Impact of the discovery of human zinc deficiency on health. J Am Coll Nutr 28:257–265

    Article  CAS  Google Scholar 

  6. Rink L (2011) Zinc in human health. IOS Press, Amsterdam

    Google Scholar 

  7. Haase H, Rink L (2009) Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 29:133–152

    Article  CAS  Google Scholar 

  8. Haase H, Rink L (2014) Multiple impacts of zinc on immune function. Metallomics 6:1175–1180

    Article  CAS  Google Scholar 

  9. Kahmann L, Uciechowski P, Warmuth S, Pliimdkers B, Gressner AM, Malavolta M, Mocchegiani E, Rink L (2008) Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores T cell functions. Rejuvenation Res 11:227–237

    Article  CAS  Google Scholar 

  10. Kaltenberg J, Plum LM, Ober-Blobaum JL, Honscheid A, Rink L, Haase H (2010) Zinc signals promote IL-2-dependent proliferation of T cells. Eur J Immunol 40:1496–1503

    Article  CAS  Google Scholar 

  11. Honscheid A, Dubben S, Rink L, Haase H (2012) Zinc differentially regulates mitogen-activated protein kinases in human T cells. J Nutr Biochem 23:18–26

    Article  Google Scholar 

  12. Yu MC, Lee WW, Tomar D, Pryshchep S, Czesnikiewicz-Guzik M, Lamar DL, Li GJ, Singh K, Tian L, Weyand CM, Goronzy JJ (2011) Regulation of T cell receptor signaling by activation-induced zinc influx. J Exp Med 208:775–785

    Article  CAS  Google Scholar 

  13. Bhatnagar S, Wadhwa N, Aneja S, Lodha R, Kabra SK, Natchu UCM, Sommerfelt H, Dutta AK, Chandra J, Rath B, Sharma M, Sharma VK, Kumari M, Strand TA (2012) Zinc as adjunct treatment in infants aged between 7 and 120 days with probable serious bacterial infection: a randomised, double-blind, placebo-controlled trial. Lancet 379:2072–2078

    Article  CAS  Google Scholar 

  14. Prasad AS (2009) Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care 12:646–652

    Article  CAS  Google Scholar 

  15. Kitabayashi C, Fukada T, Kanamoto M, Ohashi W, Hojyo S, Atsumi T, Ueda N, Azuma I, Hirota H, Murakami M, Hirano T (2010) Zinc suppresses T(h)17 development via inhibition of STAT3 activation. Int Immunol 22:375–386

    Article  CAS  Google Scholar 

  16. Kown MH, van der Steenhoven TJ, Jahncke CL, Mari C, Lijkwan MA, Koransky ML, Blankenberg FG, Strauss HW, Robbins RC (2002) Zinc chloride-mediated reduction of apoptosis as an adjunct immunosuppressive modality in cardiac transplantation. J Heart Lung Transpl 21:360–365

    Article  Google Scholar 

  17. Stoye D, Schubert C, Goihl A, Guttek K, Reinhold A, Brocke S, Grungreiff K, Reinhold D (2012) Zinc aspartate suppresses T cell activation in vitro and relapsing experimental autoimmune encephalomyelitis in SJL/J mice. Biometals 25:529–539

    Article  CAS  Google Scholar 

  18. Campo CA, Wellinghausen N, Faber C, Fischer A, Rink L (2001) Zinc inhibits the mixed lymphocyte culture. Biol Trace Elem Res 79:15–22

    Article  CAS  Google Scholar 

  19. Faber C, Gabriel P, Ibs KH, Rink L (2004) Zinc in pharmacological doses suppresses allogeneic reaction without affecting the antigenic response. Bone Marrow Transpl 33:1241–1246

    Article  CAS  Google Scholar 

  20. Shevach EM (2009) Mechanisms of Foxp3(+) T regulatory cell-mediated suppression. Immunity 30:636–645

    Article  CAS  Google Scholar 

  21. Sakaguchi S, Wing K, Yamaguchi T (2009) Dynamics of peripheral tolerance and immune regulation mediated by Treg. Eur J Immunol 39:2331–2336

    Article  CAS  Google Scholar 

  22. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192:303–309

    Article  CAS  Google Scholar 

  23. Akdis CA, Akdis M (2009) Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. J Allergy Clin Immunol 123:735–746

    Article  CAS  Google Scholar 

  24. Akdis M, Verhagen J, Taylor A, Karamloo F, Karagiannidis C, Crameri R, Thunberg S, Deniz G, Valenta R, Fiebig H, Kegel C, Disch R, Schmidt-Weber CB, Blaser K, Akdis CA (2004) Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med 199:1567–1575

    Article  CAS  Google Scholar 

  25. Antiga E, Kretz CC, Klembt R, Massi D, Ruland V, Stumpf C, Baroni G, Hartmann M, Hartschuh W, Volpi W, Del Bianco E, Enk A, Fabbri P, Krammer PH, Caproni M, Kuhn A (2010) Characterization of regulatory T cells in patients with dermatomyositis. J Autoimmun 35:342–350

    Article  CAS  Google Scholar 

  26. Boudousquie C, Pellaton C, Barbier N, Spertini F (2009) CD4(+)CD25(+) T cell depletion impairs tolerance induction in a murine model of asthma. Clin Exp Allergy 39:1415–1426

    Article  CAS  Google Scholar 

  27. Smith M, Tourigny MR, Noakes P, Catherine A, Tulic MK, Prescott SL (2008) Children with egg allergy have evidence of reduced neonatal CD4(+)CD25(+)CD127lo/− regulatory T cell function. J Allergy Clin Immunol 121:1460–1466

    Article  CAS  Google Scholar 

  28. Burbach GJ, Heinzerling LM, Rohnelt C, Bergmann KC, Behrendt H, Zuberbier T (2009) Ragweed sensitization in Europe—GA(2)LEN study suggests increasing prevalence. Allergy 64:664–665

    Article  CAS  Google Scholar 

  29. D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, Liccardi G, Popov T, Van Cauwenberge P (2007) Allergenic pollen and pollen allergy in Europe. Allergy 62:976–990

    Article  Google Scholar 

  30. Provoost S, Maes T, van Durme YM, Gevaert P, Bachert C, Schmidt-Weber CB, Brusselle GG, Joos GF, Tournoy KG (2009) Decreased FOXP3 protein expression in patients with asthma. Allergy 64:1539–1546

    Article  CAS  Google Scholar 

  31. Ahangarani RR, Janssens W, VanderElst L, Carlier V, VandenDriessche T, Chuah M, Weynand B, Vanoirbeek JAJ, Jacquemin M, Saint-Remy JM (2009) In vivo induction of type 1-like regulatory T cells using genetically modified B cells confers long-term IL-10-dependent antigen-specific unresponsiveness. J Immunol 183:8232–8243

    Article  Google Scholar 

  32. de Lafaille MAC, Kutchukhidze N, Shen S, Ding Y, Yee H, Lafaille JJ (2008) Adaptive Foxp3(+) regulatory T cell-dependent and -independent control of allergic inflammation. Immunity 29:114–126

    Article  Google Scholar 

  33. Richter M, Bonneau R, Girard MA, Beaulieu C, Larivee P (2003) Zinc status modulates bronchopulmonary eosinophil infiltration in a murine model of allergic inflammation. Chest 123:446S

    Article  Google Scholar 

  34. Overbeck S, Uciechowski P, Ackland ML, Ford D, Rink L (2008) Intracellular zinc homeostasis in leukocyte subsets is regulated by different expression of zinc exporters ZnT-1 to ZnT-9. J Leukoc Biol 83:368–380

    Article  CAS  Google Scholar 

  35. Faneyte IF, Kristel PMP, van de Vijver MJ (2001) Determining MDR1/P-glycoprotein expression in breast cancer. Int J Cancer 93:114–122

    Article  CAS  Google Scholar 

  36. Haase H, Hebel S, Engelhardt G, Rink L (2006) Flow cytometric measurement of labile zinc in peripheral blood mononuclear cells. Anal Biochem 352:222–230

    Article  CAS  Google Scholar 

  37. Ditoro R, Capotorti MG, Gialanella G, Delgiudice MM, Moro R, Perrone L (1987) Zinc and copper status of allergic children. Acta Paediatr Scand 76:612–617

    Article  CAS  Google Scholar 

  38. Pawankar R, Canonica GW, Holgate ST, Lockey RF (2012) Allergic diseases and asthma: a major global health concern. Curr Opin Allergy Clin Immunol 12:39–41

    Article  Google Scholar 

  39. Barczyk A, Pierzchala W, Caramori G, Wiaderkiewicz R, Kaminski M, Barnes PJ, Adcock IM (2014) Decreased percentage of CD4(+)Foxp3(+)TGF-beta(+) and increased percentage of CD4(+)IL-17(+) cells in bronchoalveolar lavage of asthmatics. J Inflamm Lond 11:22

    Article  Google Scholar 

  40. Cohn L, Homer R, Niu N, Bottomly K (1999) Th1 cells inhibit TH2-induced airway eosinophilia and mucus production. Am J Respir Crit Care Med 159:A336

    Google Scholar 

  41. Hayashi N, Yoshimoto T, Izuhara K, Matsui K, Tanaka T, Nakanishi K (2007) T helper 1 cells stimulated with ovalbumin and IL-18 induce airway hyperresponsiveness and lung fibrosis by IFN-gamma and IL-13 production. Proc Natl Acad Sci USA 104:14765–14770

    Article  CAS  Google Scholar 

  42. Ling EM, Smith T, Nguyen XD, Pridgeon C, Dallman M, Arbery J, Carr VA, Robinson DS (2004) Relation of CD4+ CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 363:608–615

    Article  CAS  Google Scholar 

  43. Boscolo P, Di Gioacchino M, Sabbioni E, Benvenuti F, Conti P, Reale M, Bavazzano P, Giuliano G (1999) Expression of lymphocyte subpopulations, cytokine serum levels, and blood and urinary trace elements in asymptomatic atopic men exposed to an urban environment. Int Arch Occup Environ Health 72:26–32

    Article  CAS  Google Scholar 

  44. Guo CH, Liu PJ, Hsia S, Chuang CJ, Chen PC (2011) Role of certain trace minerals in oxidative stress, inflammation, CD4/CD8 lymphocyte ratios and lung function in asthmatic patients. Ann Clin Biochem 48:344–351

    Article  CAS  Google Scholar 

  45. Tudor R, Zalewski PD, Ratnaike RN (2005) Zinc in health and chronic disease. J Nutr Health Aging 9:45–51

    CAS  Google Scholar 

  46. Uysalol M, Uysalol EP, Yilmaz Y, Parlakgul G, Ozden TA, Ertem HV, Omer B, Uzel N (2014) Serum level of vitamin D and trace elements in children with recurrent wheezing: a cross-sectional study. BMC Pediatr 14:270

    Article  Google Scholar 

  47. Vural H, Uzun K, Uz E, Kocyigit A, Cigli A, Akyol O (2000) Concentrations of copper, zinc and various elements in serum of patients with bronchial asthma. J Trace Elem Med Biol 14:88–91

    Article  CAS  Google Scholar 

  48. Xu TF, Wang XL, Yang JZ, Hu XY, Wu WF, Guo L, Kang LD, Zhang LY (2009) Overexpression of Zip-2 mRNA in the leukocytes of asthmatic infants. Pediatr Pulmonol 44:763–767

    Article  Google Scholar 

  49. Picado C, Deulofeu R, Lleonart R, Agusti M, Mullol J, Qunito L, Torra M (2001) Dietary micronutrients/antioxidants and their relationship with bronchial asthma severity. Allergy 56:43–49

    Article  CAS  Google Scholar 

  50. Urushidate S, Matsuzaka M, Okubo N, Iwasaki H, Hasebe T, Tsuya R, Iwane K, Inoue R, Yamai K, Danjo K, Takahashi I, Umeda T, Ando S, Itai K, Nakaji S (2010) Association between concentration of trace elements in serum and bronchial asthma among Japanese general population. J Trace Elem Med Biol 24:236–242

    Article  CAS  Google Scholar 

  51. Ellulmicallee R, Fenech FF, Galdes A (1976) Serum zinc levels in corticosteroid-treated asthmatic-patients. Postgrad Med J 52:148–150

    Article  Google Scholar 

  52. Flynn A, Pories WJ, Strain WH, Hill OA, Fratianne RB (1971) Rapid serum-zinc depletion associated with corticosteroid therapy. Lancet 2:1169–1172

    Article  CAS  Google Scholar 

  53. Mocchegiani E, Romeo J, Malavolta M, Costarelli L, Giacconi R, Diaz LE, Marcos A (2013) Zinc: dietary intake and impact of supplementation on immune function in elderly. Age 35:839–860

    Article  CAS  Google Scholar 

  54. Prasad AS (2000) Effects of zinc deficiency on Th1 and Th2 cytokine shifts. J Infect Dis 182:S62–S68

    Article  CAS  Google Scholar 

  55. Lu HY, Xin Y, Tang Y, Shao GB (2012) Zinc suppressed the airway inflammation in asthmatic rats: effects of zinc on generation of eotaxin, MCP-1, IL-8, IL-4, and IFN-gamma. Biol Trace Elem Res 150:314–321

    Article  Google Scholar 

  56. Aydemir TB, Liuzzi JP, McClellan S, Cousins RJ (2009) Zinc transporter ZIP8 (SLC39A8) and zinc influence IFN-gamma expression in activated human T cells. J Leukoc Biol 86:337–348

    Article  CAS  Google Scholar 

  57. Cosmi L, Liotta F, Angeli R, Mazzinghi B, Santarlasci V, Manetti R, Lasagni L, Vanini V, Romagnani P, Maggi E, Annunziato F, Romagnani S (2004) Th2 cells are less susceptible than Th1 cells to the suppressive activity of CD25(+) regulatory thymocytes because of their responsiveness to different cytokines. Blood 103:3117–3121

    Article  CAS  Google Scholar 

  58. Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH, Ziegler SF (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4(+)CD25(−) T cells. J Clin Invest 112:1437–1443

    Article  CAS  Google Scholar 

  59. Chen L, Feng Y, Zhou Y, Zhu W, Shen X, Chen K, Jiang H, Liu D (2010) Dual role of Zn2+ in maintaining structural integrity and suppressing deacetylase activity of SIRT1. J Inorg Biochem 104:180–185

    Article  CAS  Google Scholar 

  60. Plum LM, Brieger A, Engelhardt G, Hebel S, Nessel A, Arlt M, Kaltenberg J, Schwaneberg U, Huber M, Rink L, Haase H (2014) PTEN-inhibition by zinc ions augments interleukin-2-mediated Akt phosphorylation. Metallomics 6:1277–1287

    Article  CAS  Google Scholar 

  61. Kwon HS, Lim HW, Wu J, Schnolzer M, Verdin E, Ott M (2012) Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells. J Immunol 188:2712–2721

    Article  CAS  Google Scholar 

  62. Barron L, Dooms H, Hoyer KK, Kuswanto W, Hofmann J, O’Gorman WE, Abbas AK (2010) Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J Immunol 185:6426–6430

    Article  CAS  Google Scholar 

  63. Pan F, Yu H, Dang EV, Barbi J, Pan X, Grosso JF, Jinasena D, Sharma SM, McCadden EM, Getnet D, Drake CG, Liu JO, Ostrowski MC, Pardoll DM (2009) Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325:1142–1146

    Article  CAS  Google Scholar 

  64. Song X, Li B, Xiao Y, Chen C, Wang Q, Liu Y, Berezov A, Xu C, Gao Y, Li Z, Wu SL, Cai Z, Zhang H, Karger BL, Hancock WW, Wells AD, Zhou Z, Greene MI (2012) Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function. Cell Rep 1:665–675

    Article  CAS  Google Scholar 

  65. Twu YC, Teh HS (2014) The ThPOK transcription factor differentially affects the development and function of self-specific CD8(+) T cells and regulatory CD4(+) T cells. Immunology 141:431–445

    Article  CAS  Google Scholar 

  66. Sumitomo S, Fujio K, Okamura T, Morita K, Ishigaki K, Suzukawa K, Kanaya K, Kondo K, Yamasoba T, Furukawa A, Kitahara N, Shoda H, Shibuya M, Okamoto A, Yamamoto K (2013) Transcription factor early growth response 3 is associated with the TGF-β1 expression and the regulatory activity of CD4-positive T cells in vivo. J Immunol 191:2351–2359

    Article  CAS  Google Scholar 

  67. Sun X, Zhou X, Du L, Liu W, Liu Y, Hudson LG, Liu KJ (2014) Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. Toxicol Appl Pharmacol 274:313–318

    Article  CAS  Google Scholar 

  68. Nurmatov U, Nwaru BI, Devereux G, Sheikh A (2012) Confounding and effect modification in studies of diet and childhood asthma and allergies. Allergy 67:1041–1059

    Article  CAS  Google Scholar 

  69. Patelarou E, Giourgouli G, Lykeridou A, Vrioni E, Fotos N, Siamaga E, Vivilaki V, Brokalaki H (2011) Association between biomarker-quantified antioxidant status during pregnancy and infancy and allergic disease during early childhood: a systematic review. Nutr Rev 69:627–641

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge grant support SFB/TR22 A03 and Z01 from the Deutsche Forschungsgemeinschaft for A.P. L.R. is a member of the European COST action Zinc-Net (TDI304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Rink.

Ethics declarations

The study was approved by the local ethical committee (No. AZ 016/09) and had therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All persons gave their informed consent prior to their inclusion in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Arnd Petersen is the Member of the German Center for Lung Research (DZL), Borstel, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenkranz, E., Hilgers, RD., Uciechowski, P. et al. Zinc enhances the number of regulatory T cells in allergen-stimulated cells from atopic subjects. Eur J Nutr 56, 557–567 (2017). https://doi.org/10.1007/s00394-015-1100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-1100-1

Keywords

Navigation