Skip to main content
Log in

ROS and endothelial nitric oxide synthase (eNOS)-dependent trafficking of angiotensin II type 2 receptor begets neuronal NOS in cardiac myocytes

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Angiotensin II (Ang II), a potent precursor of hypertrophy and heart failure, upregulates neuronal nitric oxide synthase (nNOS or NOS1) in the myocardium. Here, we investigate the involvement of type 1 and 2 angiotensin receptors (AT1R and AT2R) and molecular mechanisms mediating Ang II-upregulation of nNOS. Our results showed that pre-treatment of left ventricular (LV) myocytes with antagonists of AT1R or AT2R (losartan, PD123319) and ROS scavengers (apocynin, tiron or PEG-catalase) blocked Ang II-upregulation of nNOS. Surface biotinylation or immunocytochemistry experiments demonstrated that AT1R expression in plasma membrane was progressively decreased (internalization), whereas AT2R was increased (membrane trafficking) by Ang II. Inhibition of AT1R or ROS scavengers prevented Ang II-induced translocation of AT2R to plasma membrane, suggesting an alignment of AT1R-ROS-AT2R. Furthermore, Ang II increased eNOS-Ser1177 but decreased eNOS-Thr495, indicating concomitant activation of eNOS. Intriguingly, ROS scavengers but not AT2R antagonist prevented Ang II-activation of eNOS. NOS inhibitor (L-NG-Nitroarginine Methyl Ester, L-NAME) or eNOS gene deletion (eNOS−/−) abolished Ang II-induced membrane trafficking of AT2R, nNOS protein expression and activity. Mechanistically, S-nitrosation of AT2R was increased by sodium nitroprusside (SNP), a NO donor. Site-specific mutagenesis analysis reveals that C-terminal cysteine 349 in AT2R is essential in AT2R translocation to plasma membrane. Taken together, we demonstrate, for the first time, that Ang II upregulates nNOS protein expression and activity via AT1R/ROS/eNOS-dependent S-nitrosation and membrane translocation of AT2R. Our results suggest a novel crosstalk between AT1R and AT2R in regulating nNOS via eNOS in the myocardium under pathogenic stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O’Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339. doi:10.1016/S0002-9149(01)02321-9

    Article  CAS  PubMed  Google Scholar 

  2. Bendall JK, Damy T, Ratajczak P, Loyer X, Monceau V, Marty I, Milliez P, Robidel E, Marotte F, Samuel JL, Heymes C (2004) Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in beta-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation 110:2368–2375. doi:10.1161/01.CIR.0000145160.04084.AC

    Article  CAS  PubMed  Google Scholar 

  3. Brede M, Roell W, Ritter O, Wiesmann F, Jahns R, Haase A, Fleischmann BK, Hein L (2003) Cardiac hypertrophy is associated with decreased eNOS expression in angiotensin AT2 receptor-deficient mice. Hypertension 42:1177–1182. doi:10.1161/01.HYP.0000100445.80029.8E

    Article  CAS  PubMed  Google Scholar 

  4. Burkard N, Williams T, Czolbe M, Blömer N, Panther F, Link M, Fraccarollo D, Widder JD, Hu K, Han H, Hofmann U, Frantz S, Nordbeck P, Bulla J, Schuh K, Ritter O (2010) Conditional overexpression of neuronal nitric oxide synthase is cardioprotective in ischemia/reperfusion. Circulation 122:1588–1603. doi:10.1161/CIRCULATIONAHA.109.933630

    Article  CAS  PubMed  Google Scholar 

  5. Cai H, Li Z, Dikalov S, Holland SM, Hwang J, Jo H, Dudley SC Jr, Harrison DG (2002) NAD(P)H oxidase-derived hydrogen peroxide mediates endothelial nitric oxide production in response to angiotensin II. J Biol Chem 277:48311–48317. doi:10.1074/jbc.M208884200

    Article  CAS  PubMed  Google Scholar 

  6. Chow BS, Kocan M, Bosnyak S, Sarwar M, Wigg B, Jones ES, Widdop RE, Summers RJ, Bathgate RA, Hewitson TD, Samuel CS (2014) Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis. Kidney Int 86:75–85. doi:10.1038/ki.2013.518

    Article  CAS  PubMed  Google Scholar 

  7. Copp SW, Hirai DM, Ferguson SK, Holdsworth CT, Musch TI, Poole DC (2012) Effects of chronic heart failure on neuronal nitric oxide synthase-mediated control of microvascular O2 pressure in contracting rat skeletal muscle. J Physiol 590:3585–3596. doi:10.1113/jphysiol.2012.235929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Costa MA, Lopez Verrilli MA, Gomez KA, Nakagawa P, Peña C, Arranz C, Gironacci MM (2010) Angiotensin-(1-7) upregulates cardiac nitric oxide synthase in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 299:H1205–H1211. doi:10.1152/ajpheart.00850.2009

    Article  CAS  PubMed  Google Scholar 

  9. Damy T, Ratajczak P, Shah AM, Camors E, Marty I, Hasenfuss G, Marotte F, Samuel JL, Heymes C (2004) Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet 363:1365–1367. doi:10.1016/S0140-6736(04)16048-0

    Article  CAS  PubMed  Google Scholar 

  10. Dias-Peixoto MF, Santos RA, Gomes ER, Alves MN, Almeida PW, Greco L, Rosa M, Fauler B, Bader M, Alenina N, Guatimosim S (2008) Molecular mechanisms involved in the angiotensin-(1-7)/Mas signaling pathway in cardiomyocytes. Hypertension 52:542–548. doi:10.1161/HYPERTENSIONAHA.108.114280

    Article  CAS  PubMed  Google Scholar 

  11. Gao J, Zucker IH, Gao L (2014) Activation of central angiotensin type 2 receptors by compound 21 improves arterial baroreflex sensitivity in rats with heart failure. Am J Hypertens 27:1248–1256. doi:10.1093/ajh/hpu044

    Article  PubMed  Google Scholar 

  12. Gao J, Zhang H, Le KD, Chao J, Gao L (2011) Activation of central angiotensin type 2 receptors suppresses norepinephrine excretion and blood pressure in conscious rats. Am J Hypertens 24:724–730. doi:10.1038/ajh.2011.33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Heusch G, Post H, Michel MC, Kelm M, Schulz R (2000) Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res 87:146–152. doi:10.1161/01.RES.87.2.146

    Article  CAS  PubMed  Google Scholar 

  14. Heusch G, Schulz R (2011) A radical view on the contractile machinery in human heart failure. J Am Coll Cardiol 57:310–312. doi:10.1016/j.jacc.2010.06.057

    Article  CAS  PubMed  Google Scholar 

  15. Huang A, Sun D, Shesely EG, Levee EM, Koller A, Kaley G (2002) Neuronal NOS-dependent dilation to flow in coronary arteries of male eNOS-KO mice. Am J Physiol Heart Circ Physiol 282:H429–H436. doi:10.1152/ajpheart.00501.2001

    Article  CAS  PubMed  Google Scholar 

  16. Huisamen B, Pêrel SJ, Friedrich SO, Salie R, Strijdom H, Lochner A (2011) ANG II type I receptor antagonism improved nitric oxide production and enhanced eNOS and PKB/Akt expression in hearts from a rat model of insulin resistance. Mol Cell Biochem 349:21–31. doi:10.1007/s11010-010-0656-6

    Article  CAS  PubMed  Google Scholar 

  17. Jalowy A, Schulz R, Dörge H, Behrends M, Heusch G (1998) Infart size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. J Am Coll Cardiol 32:1787–1796. doi:10.1016/S0735-1097(98)00441-0

    Article  CAS  PubMed  Google Scholar 

  18. Jin CZ, Jang JH, Wang Y, Kim JG, Bae YM, Shi J, Che CR, Kim SJ, Zhang YH (2012) Neuronal nitric oxide synthase is up-regulated by angiotensin II and attenuates NADPH oxidase activity and facilitates relaxation in murine left ventricular myocytes. J Mol Cell Cardiol 52:1274–1281. doi:10.1016/j.yjmcc.2012.03.013

    Article  CAS  PubMed  Google Scholar 

  19. Jin CZ, Jang JH, Kim HJ, Wang Y, Hwang IC, Sadayappan S, Park BM, Kim SH, Jin ZH, Seo EY, Kim KH, Kim YJ, Kim SJ, Zhang YH (2013) Myofilament Ca2+ desensitization mediates positive lusitropic effect of neuronal nitric oxide synthase in left ventricular myocytes from murine hypertensive heart. J Mol Cell Cardiol 60:107–115. doi:10.1016/j.yjmcc.2013.04.017

    Article  CAS  PubMed  Google Scholar 

  20. Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE (2008) AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Ther 120:292–316. doi:10.1016/j.pharmthera.2008.08.009

    Article  CAS  PubMed  Google Scholar 

  21. Kellogg DL Jr, Zhao JL, Wu Y (2008) Neuronal nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo. J Physiol 586:847–857. doi:10.1113/jphysiol.2007.144642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kinugawa S, Huang H, Wang Z, Kaminski PM, Wolin MS, Hintze TH (2005) A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase. Circ Res 96:355–362. doi:10.1161/01.RES.0000155331.09458.A7

    Article  CAS  PubMed  Google Scholar 

  23. Ladurner A, Schmitt CA, Schachner D, Atanasov AG, Werner ER, Dirsch VM, Heiss EH (2012) Ascorbate stimulates endothelial nitric oxide synthase enzyme activity by rapid modulation of its phosphorylation status. Free Radic Biol Med 52(10):2082–2090. doi:10.1016/j.freeradbiomed.2012.03.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM (2013) Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 19:1110–1120. doi:10.1089/ars.2012.4641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Oyamada S, Bianchi C, Takai S, Robich MP, Clements RT, Chu L, Sellke FW (2010) Impact of acute myocardial ischemia reperfusion on the tissue and blood-borne renin–angiotensin system. Basic Res Cardiol 105:513–522. doi:10.1007/s00395-010-0093-4

    Article  CAS  PubMed  Google Scholar 

  26. Padia SH, Carey RM (2013) AT2 receptors: beneficial counter-regulatory role in cardiovascular and renal function. Pflugers Arch 465:99–110. doi:10.1007/s00424-012-1146-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Paliege A, Pasumarthy A, Mizel D, Yang T, Schnermann J, Bachmann S (2006) Effect of apocynin treatment on renal expression of COX-2, NOS1, and renin in Wistar-Kyoto and spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 290:694–700. doi:10.1152/ajpregu.00219.2005

    Article  Google Scholar 

  28. Patel KP, Schultz HD (2012) Angiotensin Peptides and Nitric Oxide in Cardiovascular Disease. Antioxid Redox Signal 19:1121–1132. doi:10.1089/ars.2012.4614

    Article  PubMed  Google Scholar 

  29. Post H, Schulz R, Gres P, Heusch G (2001) No involvement of nitric oxide in the limitation of beta-adrenergic inotropic responsiveness during ischemia. Am J Physiol Heart Circ Physiol 281:H2392–H2397

    CAS  PubMed  Google Scholar 

  30. Ramchandran R, Takezako T, Saad Y, Stull L, Fink B, Yamada H, Dikalov S, Harrison DG, Moravec C, Karnik SS (2006) Angiotensinergic stimulation of vascular endothelium in mice causes hypotension, bradycardia, and attenuated angiotensin response. Proc Natl Acad Sci USA 103:19087–19092. doi:10.1073/pnas.0602715103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ritter O, Schuh K, Brede M, Röthlein N, Burkard N, Hein L, Neyses L (2003) AT2 receptor activation regulates myocardial eNOS expression via the calcineurin-NF-AT pathway. FASEB J 17:283–285. doi:10.1096/fj.02-0321fje

    CAS  PubMed  Google Scholar 

  32. Sartoretto JL, Kalwa H, Pluth MD, Lippard SJ, Michel T (2011) Hydrogen peroxide differentially modulates cardiac myocyte nitric oxide synthesis. Proc Natl Acad Sci USA 108:15792–15797. doi:10.1073/pnas.1111331108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BM (2007) Renin–angiotensin system and cardiovascular risk. Lancet 369:1208–1219. doi:10.1016/S0140-6736(07)60242-6

    Article  CAS  PubMed  Google Scholar 

  34. Sears CE, Bryant SM, Ashley EA, Lygate CA, Rakovic S, Wallis HL, Neubauer S, Terrar DA, Casadei B (2003) Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling. Circ Res 92:e52–e59. doi:10.1161/01.RES.0000064585.95749.6D

    Article  CAS  PubMed  Google Scholar 

  35. Takimoto E, Champion HC, Li M, Ren S, Rodriguez ER, Tavazzi B, Lazzarino G, Paolocci N, Gabrielson KL, Wang Y, Kass DA (2005) Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest 115:1221–1231. doi:10.1172/JCI21968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Tambascia RC, Fonseca PM, Corat PD, Moreno H Jr, Saad MJ, Franchini KG (2001) Expression and distribution of NOS1 and NOS3 in the myocardium of angiotensin II-infused rats. Hypertension 37:1423–1428. doi:10.1161/01.HYP.37.6.1423

    Article  CAS  PubMed  Google Scholar 

  37. Unger T (2002) The role of the renin–angiotensin system in the development of cardiovascular disease. Am J Cardiol 89:3A–10A. doi:10.1016/S0002-9149(01)02321-9

    Article  CAS  PubMed  Google Scholar 

  38. Varagic J, Frohlich ED (2002) Local cardiac renin–angiotensin system: hypertension and cardiac failure. J Mol Cell Cardiol 34:1435–1442. doi:10.1006/jmcc.2002.2075

    Article  CAS  PubMed  Google Scholar 

  39. Wiemer G, Itter G, Malinski T, Linz W (2001) Decreased nitric oxide availability in normotensive and hypertensive rats with failing hearts after myocardial infarction. Hypertension 38:1367–1371. doi:10.1161/hy1101.096115

    Article  CAS  PubMed  Google Scholar 

  40. Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 96:657–662. doi:10.1073/pnas.96.2.657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Zhang X, Dong C, Wu QJ, Balch WE, Wu G (2011) Di-acidic motifs in the membrane-distal C termini modulate the transport of angiotensin II receptors from the endoplasmic reticulum to the cell surface. J Biol Chem 286:20525–20535. doi:10.1074/jbc.M111.222034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Zhang YH, Casadei B (2012) Sub-cellular targeting of constitutive NOS in health and disease. J Mol Cell Cardiol 52:341–350. doi:10.1016/j.yjmcc.2011.09.006

    Article  CAS  PubMed  Google Scholar 

  43. Zhang YH, Dingle L, Hall R, Casadei B (2009) The role of nitric oxide and reactive oxygen species in the positive inotropic response to mechanical stretch in the mammalian myocardium. Biochim Biophys Acta 1787:811–817. doi:10.1016/j.bbabio.2009.03.020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Zhang YH, Jin CZ, Jang JH, Wang Y (2014) Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophysiology. J Physiol 592:3189–3200. doi:10.1113/jphysiol.2013.270306

    Article  CAS  PubMed  Google Scholar 

  45. Zhang YH, Zhang MH, Sears CE, Emanuel K, Redwood C, El-Armouche A, Kranias EG, Casadei B (2008) Reduced phospholamban phosphorylation is associated with impaired relaxation in left ventricular myocytes from neuronal NO synthase-deficient mice. Circ Res 102:242–249. doi:10.1161/CIRCRESAHA.107.164798

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013068067); by the Brain Korea 21 Graduate Programme of the Korean Ministry of Education, Science and Technology, Seoul National University Hospital, the Korean Society of Hypertension (2013), SK Telecom Research Fund (no. 3420130290) and from the National Natural Science Foundation of China (NSFC, 31460265). National Institutes of Health grant R01GM076167.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Hu Jin or Yin Hua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, J.H., Chun, J.N., Godo, S. et al. ROS and endothelial nitric oxide synthase (eNOS)-dependent trafficking of angiotensin II type 2 receptor begets neuronal NOS in cardiac myocytes. Basic Res Cardiol 110, 21 (2015). https://doi.org/10.1007/s00395-015-0477-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0477-6

Keywords

Navigation