Skip to main content
Log in

Palladium nanoparticles from solvated atoms—stability and HRTEM characterization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Palladium particles of nanometric dimensions were synthesized by the chemical liquid deposition method in which the Pd atoms were co-deposited at 77 K with 2-propanol, acetone, and tetrahydrofurane vapor to obtain colloidal dispersions. The colloidal dispersions were characterized by UV–visible spectrophotometry, transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The palladium colloids synthesized by use of these solvents are very stable. A strong absorption band in the UV region suggests that quantum confinement occurs in the nanoparticles obtained by this procedure. Studies of TEM micrographs reveal average size distributions between 1 and 5 nm for all Pd colloids. Whereas particle sizes in Pd–2-propanol colloids are not very sensitive to concentration change, the particle-size average in Pd–acetone and Pd–THF increases by 0.5 nm when the concentration increases from 10−3 to 10−2 mol l−1. The HRTEM results show the high crystallinity of Pd nanoparticles and three low-energy structure shapes were found: cuboctahedron, tetrakaidecahedron, and icosahedron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anon (1996) Science 271:877–1024; Anon (1996) Chem Mater 8:1569–2193

    Article  Google Scholar 

  2. Henglein A (1989) Chem Rev 89:1861

    CAS  Google Scholar 

  3. Schmid G (1992) Chem Rev 92:1704

    Google Scholar 

  4. Steigerwald ML, Brus LE (1990) Acc Chem Res 23:183

    CAS  Google Scholar 

  5. Fendler JH, Meldrum FC (1995) Adv Mater 7:607

    CAS  Google Scholar 

  6. Trindade T, O’Brien P, Pickett NL (2001) Chem Mater 13:3843

    Article  CAS  Google Scholar 

  7. Schmid G (1998) J Chem Soc Dalton Trans 1077

  8. Yacamán MJ, Mehl RF (1998) Metal Mater Trans A 29A:713

    Google Scholar 

  9. Schmid G, Harms M, Malm J, Bovin J, Ruitenbeck J, Zandbergen HW, Fu WT (1993) J Am Chem Soc 115:2046

    CAS  Google Scholar 

  10. Reetz MT, Helbig W (1994) J Am Chem Soc 116:7401

    CAS  Google Scholar 

  11. Teranishi T, Hori H, Miyake M (1997) J Phys Chem B 101:5774; Teranishi T, Miyake M (1998) Chem Mater 10:594

    CAS  Google Scholar 

  12. Misukoshi Y, Okitsu K, Maeda Y, Yamamoto TA, Oshima R, Nagata Y (1997) J Phys Chem B 101:7033

    Article  Google Scholar 

  13. Dhas NA, Gedanken A (1998) J Mater Chem 8:445

    Article  CAS  Google Scholar 

  14. Henglein A (2000) J Phys Chem B 104:6683

    Article  CAS  Google Scholar 

  15. Chen S, Huang K, Stearns JA (2000) Chem Mater 12:540

    Article  CAS  Google Scholar 

  16. Yonezawa T, Imamura K, Kimizuka N (2001) Langmuir 17:4701

    Article  CAS  Google Scholar 

  17. Klabunde KJ, Timms PL, Skell PS, Ittel S (1979) Inorg Synth 19:59

    CAS  Google Scholar 

  18. Cárdenas-Triviño G, Klabunde KJ, Dale EB (1987) Langmuir 3:986

    Google Scholar 

  19. Lin S, Franklin MT, Klabunde KJ (1986) Langmuir 2:259; Cárdenas G, Oliva R (1993) Bol Soc Chil Quim 38:301

    Google Scholar 

  20. Cárdenas-Triviño G, Vera V, Muñoz C (1998) Mater Res Bull 33:645

    Article  Google Scholar 

  21. Cárdenas G, Ponce A (1996) Colloid Polym Sci 274:788

    Google Scholar 

  22. Cárdenas G, Oliva R, Carbacho H (1995) Bol Soc Chil Quim 40:261

    Google Scholar 

  23. Cárdenas G, Tello A, Segura R (2001) Bol Soc Chil Quím 46:441

    Google Scholar 

  24. Cárdenas G, Segura R (2000) Mater Res Bull 35:1369

    Article  Google Scholar 

  25. Cárdenas G, Segura R, Morales J, Soto H, Lima CA (2000) Mater Res Bull 35:1251; Cárdenas G, Segura R, Morales J, Soto H, Lima CA (2000) Polyhedron 19:2337

    Article  Google Scholar 

  26. Stoeva S, Klabunde KJ, Sorensen CM, Dragieva L (2002) J Am Chem Soc 124:2305

    Article  CAS  PubMed  Google Scholar 

  27. Asencio JA, Gutierres-Wing C, Espinosa ME, Marin M, Tehuacanero S, Zorrilla C, Yacamán MJ (1998) Surf Sci 396:349

    Article  Google Scholar 

  28. Buffat PA, Flüeli M, Spycher R, Stadelmann PA, Borel JP (1991) Faraday Discuss 92:173

    CAS  Google Scholar 

  29. Marks LD (1984) Philos Mag A 49:81

    CAS  Google Scholar 

  30. Creighton JA, Eadon DG (1991) J Chem Soc Faraday Trans 87:3881

    Google Scholar 

  31. Yacamán MJ, Asencio J (2000) In Nalwa H (ed) A handbook of nanostructured materials and nanotechnology, vol 2. Academic Press, p 385

  32. Henglein A, Giersig M (1999) J Phys Chem B 103:9533

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was possible thanks to financial support from Fondecyt (Grant 2010108), CONICYT for the PhD Fellowship (R. Segura), and Mecesup UCO9905. The authors wish to thank Dirección de Investigación, Universidad de Concepción, particularly Mr Raúl Alarcón of the TEM laboratory. The authors also wish to thank Mrs Cristina Zorrilla, Mr Samuel Tehuacanero, Pedro Mexia, Roberto Hernandez, and Luis Rendón of the HRTEM and Image-Processing Laboratory of the Instituto de Física de la UNAM, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galo Cárdenas-Triviño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cárdenas-Triviño, G., Segura, R.A. & Reyes-Gasga, J. Palladium nanoparticles from solvated atoms—stability and HRTEM characterization. Colloid Polym Sci 282, 1206–1212 (2004). https://doi.org/10.1007/s00396-004-1060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1060-0

Keywords

Navigation