Skip to main content
Log in

Diglycidyl ether of bisphenol-A epoxy resin–polyether sulfone/polyether sulfone ether ketone blends: phase morphology, fracture toughness and thermo-mechanical properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The properties of diglycidyl ether of bisphenol-A epoxy resin toughened with poly(ether sulfone ether ketone) (PESEK) and poly(ether sulfone) (PES) polymers were investigated. PESEK was synthesised by the nucleophilic substitution reaction of 4,4’-difluorobenzophenone with dihydroxydiphenylsulfone using sulfolane as solvent and potassium carbonate as catalyst at 230 °C. The T g–composition behaviour of the homogeneous epoxy resin/PESEK blend was modelled using Fox, Gordon–Taylor and Kelley–Bueche equations. A single relaxation near the glass transition of epoxy resin was observed in all the blend systems. From dynamic mechanical analysis, the crosslink density of the blends was found to decrease with increase in the thermoplastic concentration. The storage modulus of the epoxy/PESEK blends was lower than that of neat resin, whilst it is higher for epoxy/PES blends up to glass transition temperature, thereafter it decreases. Scanning electron microscopic studies of the blends revealed a homogeneous morphology. The homogeneity of the blends was attributed to the similarity in chemical structure of the modifier and the cured epoxy network and due to the H-bonding interactions between the blend components. The fracture toughness of epoxy resin increased on blending with PESEK and PES. The increase in fracture toughness was due to the increase in ductility of the matrix. The thermal stability of the blends was comparable to that of neat epoxy resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ellis B (1993) Chemistry and technology of epoxy resins. Blackie Academic and Professional, London

    Google Scholar 

  2. Lee H, Neville K (1967) Handbook of epoxy resin. McGraw Hill, NewYork

    Google Scholar 

  3. Kang BU, Cho JY, Kim J, Lee SS, Park M, Lim SS, Choe CR (2001) J Appl Polym Sci 79:38

    Article  CAS  Google Scholar 

  4. Arias ML, Frontini PM, Williams RJJ (2003) Polymer 44:1537

    Article  CAS  Google Scholar 

  5. Nigam V, Setua DK, Mathur GN (2003) J Appl Polym Sci 87:861

    Article  CAS  Google Scholar 

  6. Ratna D (2001) Polymer 42:4209

    Article  CAS  Google Scholar 

  7. Thomas R, Abraham J, Thomas SP, Thoams S (2004) J Polym Sci B Polym Phys 42:2531

    Article  CAS  Google Scholar 

  8. Ramos VD, da Costa HM, Soares VLP, Nascimento RSV (2005) Polym Test 24:387

    Article  CAS  Google Scholar 

  9. Yee AF, Du J, Thouless MD (2000) Polymer blends: performance, vol. 2. Wiley, New York, pp 225–267

    Google Scholar 

  10. Blanco I, Cicala G, Motta O, Recca A (2004) J Appl Polym Sci 94:361

    Article  CAS  Google Scholar 

  11. Tang X, Zhang L, Wang T, Yu Y, Gan W, Li S (2004) Macromol Rapid Commun 25:1419

    Article  CAS  Google Scholar 

  12. Cao Y, Shao Y, Sun J, Lin S (2003) J Appl Polym Sci 90:3384

    Article  CAS  Google Scholar 

  13. Torres A, de Ullibarri IL, Abad MJ, Barral L, Cano J, Garabal SG, Diez FJ, Lopez J, Ramirez C (2004) J Appl Polym Sci 92:461

    Article  CAS  Google Scholar 

  14. Blanco I, Cicala G, Faro CL, Recca A (2003) J Appl Polym Sci 89:268

    Article  CAS  Google Scholar 

  15. Varley RJ, Hodgkin JH, Simon GP (2001) Polymer 42:3847

    Article  CAS  Google Scholar 

  16. Saxena A, Francis B, Rao VL, Ninan KN (2006) J Appl Polym Sci 100(5):3536

    Article  CAS  Google Scholar 

  17. Zheng S, Lü H, Chen C, Nie K, Guo Q (2003) Colloid Polym Sci 281:1015

    Article  CAS  Google Scholar 

  18. Zhang Z, Zheng S, Huang J, Cheng X, Guo Q, Wei J (1998) Polymer 39:1075

    Article  Google Scholar 

  19. Guo Q, Huang J, Liaohai GE, Feng Z (1992) Eur Polym J 28:405

    Article  CAS  Google Scholar 

  20. Bucknall CB, Partridge IK (1983) Polymer 24:639

    Article  CAS  Google Scholar 

  21. Hedrick JL, Yilgor I, Wilkes GL, Mc Grath JE (1985) Polym Bull 13:201

    Article  CAS  Google Scholar 

  22. Jenninger W, Schawe JEK, Alig I (2000) Polymer 41:1577

    Article  CAS  Google Scholar 

  23. Kim H, Char J (2000) Kor Aust Rheol J 12:77

    Google Scholar 

  24. Martinez I, Martin MD, Eceiza A, Oyanguren P, Mondragon I (2000) Polymer 41:1027

    Article  CAS  Google Scholar 

  25. Mimura K, Ito H, Fujioka H (2000) Polymer 41:4451

    Article  CAS  Google Scholar 

  26. Gianotti MI, Galante MJ, Oyanguren PA, Vallo CI (2003) Polym Test 22:429

    Article  Google Scholar 

  27. Mimura K, Ito H (2003) J Appl Polym Sci 89:527

    Article  CAS  Google Scholar 

  28. Hedrick JL, Jurek MJ, Yilgor I, Mc Grath JE (1985) Polym Prep 26:293

    CAS  Google Scholar 

  29. Tanaka N, Ijima T, Fukuda W, Tomoi M (1997) Polym Int 49:95

    Article  Google Scholar 

  30. Song X, Zheng S, Huang J, Zhu P, Guo Q (2001) J Appl Polym Sci 79:598

    Article  CAS  Google Scholar 

  31. Bennet GS, Faris RJ, Thompson SA (1991) Polymer 32:1633

    Article  Google Scholar 

  32. Francis B, Vanden Poel G, Posada F, Groeninckx G, Rao VL, Ramaswamy R, Thomas S (2003) Polymer 44:3687

    Article  CAS  Google Scholar 

  33. Francis B, Rao VL, Jose S, Raju KVSN, Ramaswamy R, Thomas S (2005) Polym Eng Sci 45:1645

    Article  CAS  Google Scholar 

  34. Rao VL, Sabeena PU, Rao MR, Ninan KN (1999) J Appl Polym Sci 73:2113

    Article  CAS  Google Scholar 

  35. Rao MR, Rao VL (1999) J Appl Polym Sci 74:3425

    Article  CAS  Google Scholar 

  36. Yamanaka K, Inoue T (1989) Polymer 30:662

    Article  CAS  Google Scholar 

  37. Gordon M, Taylor JS (1952) J Appl Chem 2:495

    Google Scholar 

  38. Kelley FN, Bueche F (1961) J Polym Sci 50:549

    Article  CAS  Google Scholar 

  39. Fox TG (1956) Bull Am Phys Soc 2:123

    Google Scholar 

  40. Belorgey G, Prud’homme RE (1982) J Polym Sci B Polym Phys 20:191

    CAS  Google Scholar 

  41. Belorgey G, Aubin M, Prud’homme RE (1982) Polymer 23:1051

    Article  CAS  Google Scholar 

  42. Nielsen LE (1969) J Macromol Sci Rev Macromol Chem 3:69

    CAS  Google Scholar 

  43. Bellenger V, Verdu J, Morel E (1987) J Polym Sci B 25:1219

    Article  CAS  Google Scholar 

  44. Kramer EJ, Berger LL (1990) Adv Polym Sci 91/92:1

    Article  CAS  Google Scholar 

  45. Meyer F, Sanz G, Eceiza A, Mondragon I, Mijovi J (1995) Polymer 36:1407

    Article  CAS  Google Scholar 

  46. Sanz, G, Garmendia J, Andres MA, Mondragon I (1995) J Appl Polym Sci 55:75

    Article  CAS  Google Scholar 

  47. Hedrick JL, Yilgor I, Jurek M, Hedrick JC, Wilkes GL, Mc Grath JE (1991) Polymer 32:2020

    Article  CAS  Google Scholar 

  48. Huang P, Zheng S, Huang J, Guo Q (1997) Polymer 38:5565

    Article  CAS  Google Scholar 

  49. Park SJ, Kim SC (2001) J Appl Polym Sci 39:121

    Article  CAS  Google Scholar 

  50. Coats AW, Redfern JP (1964) Nature 201:168

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the authorities of Vikram Sarabhai Space Centre for giving permission to publish this article. One of the authors (Bejoy Francis) is thankful to CSIR, New Delhi for providing Senior Research Fellowship. Thanks are also due to Analytical and Spectroscopy Division, VSSC and Sreechitra Thirunal Institute for Medical Science and Technology for analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabu Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, B., Thomas, S., Thomas, S.P. et al. Diglycidyl ether of bisphenol-A epoxy resin–polyether sulfone/polyether sulfone ether ketone blends: phase morphology, fracture toughness and thermo-mechanical properties. Colloid Polym Sci 285, 83–93 (2006). https://doi.org/10.1007/s00396-006-1537-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-006-1537-0

Keywords

Navigation