Skip to main content
Log in

Desiccating colloidal sessile drop: dynamics of shape and concentration

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Using lubrication theory, drying processes of sessile colloidal droplets on a solid substrate are studied. A simple model is proposed to describe temporal dynamics of both the shape of the drop and the volume fraction of the colloidal particles inside the drop. The concentration dependence of the viscosity is taken into account. It is shown that the final shapes of the drops depend on both the initial volume fraction of the colloidal particles and the capillary number. The results of our simulations are in a reasonable agreement with the published experimental data. Computations for the drops of aqueous solution of human serum albumin are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson DM, Davis SH (1995) The spreading of volatile liquid droplets on heated surfaces. Phys Fluids 7(2):248–265

    Article  CAS  Google Scholar 

  2. Annarelli CC, Fornazero J, Bert J, Colombani J (2001) Crack patterns in drying protein solution drops. Eur Phys J E 5(5):599–603

    Article  CAS  Google Scholar 

  3. Bhardwaj R, Fang X, Attinger D (2009) Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study. New J Phys 11(7):075,020

    Article  Google Scholar 

  4. Brutin D, Sobac B, Loquet B, Sampol J (2011) Pattern formation in drying drops of blood. J Fluid Mech 667:85–95

    Article  CAS  Google Scholar 

  5. Burelbach JP, Bankoff SG, Davis SH (1988) Nonlinear stability of evaporating/condensing liquid films. J Fluid Mech 195:463–494

    Article  CAS  Google Scholar 

  6. Chashechkin YD, Bardakov RN (2010) Formation of texture in residue of a drying drop of a multicomponent fluid. Dokl Phys 55(2):68–72

    Article  CAS  Google Scholar 

  7. Craster RV, Matar OK, Sefiane K (2009) Pinning, retraction, and terracing of evaporating droplets containing nanoparticles. Langmuir 25(6):3601–3609

    Article  CAS  Google Scholar 

  8. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Contact line deposits in an evaporating drop. Phys Rev E 62(1):756–765

    Article  CAS  Google Scholar 

  9. Fischer BJ (2002) Particle convection in an evaporating colloidal droplet. Langmuir 18(1):60–67

    Article  CAS  Google Scholar 

  10. Hu H, Larson RG (2005) Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21(9):3963–3971

    Article  CAS  Google Scholar 

  11. Jung Y, Kajiya T, Yamaue T, Doi M (2009) Film formation kinetics in the drying process of polymer solution enclosed by bank. Jpn J Appl Phys 48:031,502

    Google Scholar 

  12. Kim HS, Park S, Hagelberg F (2010) Computational approach to drying a nanoparticle-suspended liquid droplet. J Nanopart Res 13:59–68

    Article  Google Scholar 

  13. Kistovich AV, Chashechkin YD, Shabalin VV (2010) Formation mechanism of a circumferential roller in a drying biofluid drop. Tech Phys 55:473–478

    Article  CAS  Google Scholar 

  14. Koch C (1954) Feinbau und Entstehungsweise von Kristallstrukturen in getrockneten Tropfen hochmolekularsalzhaltiger Flüssigkeiten. Colloid Polym Sci 138:81–86

    CAS  Google Scholar 

  15. Koch C (1956) Über Austrocknungssprünge. Colloid Polym Sci 145:7–14

    CAS  Google Scholar 

  16. Lin Z (ed) (2010) Evaporative self-assembly of ordered complex structures. World Scientific, Singapore

    Google Scholar 

  17. Lychagov VV, Kalyanov AL, Ryabukho VP (2009) Low-coherence interference microscopy of the internal structure of crystallized blood plasma. Opt Spectrosc 107:859–865

    Article  CAS  Google Scholar 

  18. Monkos K (2004) On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach. Biochim Biophys Acta Protein Proteomics 1700(1):27–34

    Article  CAS  Google Scholar 

  19. Monkos K (2005) Determination of some hydrodynamic parameters of ovine serum albumin solutions using viscometric measurements. J Biol Phys 31:219–232

    Article  Google Scholar 

  20. Okuzono T, Aoki N, Kajiya T, Doi M (2010) Effects of gelation on the evaporation rate of polymer solutions. J Phys Soc Jpn 79(9):094,801

    Article  Google Scholar 

  21. Okuzono T, Kobayashi M, Doi M (2009) Final shape of a drying thin film. Phys Rev E 80(2):021,603

    Article  Google Scholar 

  22. Ozawa K, Nishitani E, Doi M (2005) Modeling of the drying process of liquid droplet to form thin film. Jpn J Appl Phys 44:4229–4234

    Article  CAS  Google Scholar 

  23. Parisse F, Allain C (1996) Shape changes of colloidal suspension droplets during drying. J Phys II France 6(7):1111–1119

    Article  CAS  Google Scholar 

  24. Pauchard L, Parisse F, Allain C (1999) Influence of salt content on crack patterns formed through colloidal suspension desiccation. Phys Rev E 59(3):3737–3740

    Article  CAS  Google Scholar 

  25. Petsi AJ, Kalarakis AN, Burganos VN (2010) Deposition of Brownian particles during evaporation of two-dimensional sessile droplets. Chem Eng Sci 65(10):2978–2989

    Article  CAS  Google Scholar 

  26. Popov YO (2005) Evaporative deposition patterns: spatial dimensions of the deposit. Phys Rev E 71(3):036,313

    Article  Google Scholar 

  27. Ragoonanan V, Aksan A (2008) Heterogeneity in desiccated solutions: implications for biostabilization. Biophys J 94(6):2212–2227

    Article  CAS  Google Scholar 

  28. Rapis E (2003) Protein and life (self-assembling and symmetry of protein nanostructures). Philobiblion, Jerusalem

    Google Scholar 

  29. Reyes L, Bert J, Fornazero J, Cohen R, Heinrich L (2002) Influence of conformational changes on diffusion properties of bovine serum albumin: a holographic interferometry study. Colloids Surf B Biointerfaces 25(2):99–108

    Article  CAS  Google Scholar 

  30. Savina LV (1999) Crystalloscopic structures of blood serum of healthy people and patients. Sov Kuban, Krasnodar

    Google Scholar 

  31. Shabalin VN, Shatohina SN (2001) Morphology of human biological fluids. Khrizostom, Moscow

    Google Scholar 

  32. Sole A (1954) Die rhythmischen Kristallisationen im Influenzstagogramm. Colloid Polym Sci 137:15–19

    CAS  Google Scholar 

  33. Takhistov P, Chang HC (2002) Complex stain morphologies. Ind Eng Chem Res 41(25):6256–6269

    Article  CAS  Google Scholar 

  34. Tarasevich YY (2004) Mechanisms and models of the dehydration self-organization in biological fluids. Physics-Uspekhi 47(7):717–728

    Article  CAS  Google Scholar 

  35. Tarasevich YY, Isakova OP, Kondukhov VV, Savitskaya AV (2010) Effect of evaporation conditions on the spatial redistribution of components in an evaporating liquid drop on a horizontal solid substrate. Tech Phys 55:636–644

    Article  CAS  Google Scholar 

  36. Tarasevich YY, Pravoslavnova DM (2007) Drying of a multicomponent solution drop on a solid substrate: Qualitative analysis. Tech Phys 52:159–163

    Article  CAS  Google Scholar 

  37. Tarasevich YY, Pravoslavnova DM (2007) Segregation in desiccated sessile drops of biological fluids. Eur Phys J E 22(4):311–314

    Article  CAS  Google Scholar 

  38. Vodolazskaya IV, Tarasevich YY, Isakova OP (2010) The model of phase boundary motion in drying sessile drop of colloidal solution. Nonlinear World 8(3):142–150

    Google Scholar 

  39. Widjaja E, Harris M (2008) Particle deposition study during sessile drop evaporation. AIChE J 54(9):2250–2260

    Article  CAS  Google Scholar 

  40. Witten TA (2009) Robust fadeout profile of an evaporation stain. EPL (Europhys Lett) 86(6):64,002

    Google Scholar 

  41. Yakhno T (2008) Salt-induced protein phase transitions in drying drops. J Colloid Interface Sci 318(2):225–230

    Article  CAS  Google Scholar 

  42. Yakhno TA, Yakhno VG (2009) Structural evolution of drying drops of biological fluids. Tech Phys 54:1219–1227

    Article  CAS  Google Scholar 

  43. Yakhno TA, Yakhno VG, Sanin AG, Sanina OA, Pelyushenko AS (2004) Protein and salt: spatiotemporal dynamics of events in a drying drop. Tech Phys 49:1055–1063

    Article  CAS  Google Scholar 

  44. Zheng R (2009) A study of the evaporative deposition process: pipes and truncated transport dynamics. Eur Phys J E: Soft Matter Biol Phys 29:205–218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T.A. Yakhno for the photo (Fig. 8). This work has been supported by the Russian Foundation for Basic Research, project no. 09-08-97010-r_povolzhje_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Yu. Tarasevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasevich, Y.Y., Vodolazskaya, I.V. & Isakova, O.P. Desiccating colloidal sessile drop: dynamics of shape and concentration. Colloid Polym Sci 289, 1015–1023 (2011). https://doi.org/10.1007/s00396-011-2418-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2418-8

Keywords

Navigation