Skip to main content

Advertisement

Log in

Thermal conductivity of microPCMs-filled epoxy matrix composites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The thermal conductivity of these microPCMs/matrix composites is an important property need to be considered. In this study, a series of microPCMs have been fabricated using the in situ polymerization with various core/shell ratio and average diameter; the thermal conductivity of microPCMs/epoxy composites were investigated in details. The results show that the microPCMs have smooth surface and regular global shape with compact methanol–melamine–formaldehyde shell. The shell thickness does not greatly influence the phase change behaviors of PCM. Moreover, smaller microPCMs embedded in epoxy can improve the thermal transmission ability of composites. The effect of thermal conductivity of composites can be improved with higher volume fraction (10–30%) of microPCMs; and smaller size microPCMs with the same content of PCM may also enhance the thermal transmission area in matrix. Modeling analysis of relative thermal conductivity indicates that mixing higher thermal conductivity additive in PCM or matrix is an appropriate method to improve the thermal conductivity of microPCMs/matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shukla A, Buddhi D, Sawhney RL (2009) Solar water heaters with phase change material thermal energy storage medium: a review. Renew Sust Energ Rev 13:2119–2125

    Article  CAS  Google Scholar 

  2. Kuznik F, Virgone J, Johannes K (2011) In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard. Renew Energ 36:1458–1462

    Article  CAS  Google Scholar 

  3. Kaizawa A, Kamano H, Kawai A, Jozuka T, Senda T, Maruoka N, Akiyama T (2008) Thermal and flow behaviors in heat transportation container using phase change material. Energ Convers Manag 49:698–706

    Article  CAS  Google Scholar 

  4. Sari A, Kaygusuz K (2002) Thermal performance of palmitic acid as a phase change energy storage material. Energ Convers Manag 6:863–876

    Article  Google Scholar 

  5. Bilir L, Ilken Z (2005) Total solidification time of a liquid phase change material enclosed in cylindrical/spherical containers. Appl Therm Eng 25:1488–1502

    Article  CAS  Google Scholar 

  6. Su JF, Wang LX, Ren L (2005) Preparation and characterization of double-MF shell microPCMs used in building materials. J Appl Polym Sci 97:1755–1762

    Article  CAS  Google Scholar 

  7. Gao XY, Han N, Zhang XX, Yu WY (2009) Melt-processable acrylonitrile-methyl acrylate copolymers and melt-spun fibers containing MicroPCMs. J Mater Sci 44:5877–5884

    Article  CAS  Google Scholar 

  8. Alkan C, Sari A, Karaipekli A, Uzun O (2009) Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energ Mater Sol Cell 93:143–147

    Article  CAS  Google Scholar 

  9. You M, Zhang XX, Wang JP, Wang XC (2009) Polyurethane foam containing microencapsulated phase-change materials with styrene-divinybenzene co-polymer shells. J Mater Sci 44:3141–3147

    Article  CAS  Google Scholar 

  10. Su JF, Wang LX, Ren L (2007) Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation: Influence of styrene-maleic anhydride as a surfactant. Colloid Surf A 299:268–275

    Article  CAS  Google Scholar 

  11. Salaun F, Devaux E, Bourbigot S, Rumeau P (2010) Thermoregulating response of cotton fabric containing microencapsulated phase change materials. Thermochim Acta 506:82–93

    Article  Google Scholar 

  12. Su JF, Wang SB, Huang Z, Liang JS (2010) Polyurethane microPCMs containing n-octadecane applied in building materials synthesized by interfacial polycondensation: thermal stability and heat absorption simulation. Adv Mater Res 96:121–127

    Article  CAS  Google Scholar 

  13. Zhang XX, Wang XC, Tao XM, Yick KL (2005) Energy storage polymer/MicroPCMs blended chips and thermo-regulated fibers. J Mater Sci 40:3729–3734

    Article  CAS  Google Scholar 

  14. Sari A, Alkan C, Karaipekli A (2010) Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid–liquid microPCM for thermal energy storage. Appl Energ 87:1529–1534

    Article  CAS  Google Scholar 

  15. Li W, Zhang XX, Wang XC, Niu JJ (2007) Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content. Mater Chem Phys 106:437–442

    Article  CAS  Google Scholar 

  16. Zhang XX, Fan YF, Tao XM, Yick KL (2004) Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater Chem Phys 88:300–307

    Article  CAS  Google Scholar 

  17. Alkilani MM, Sopian K, Alghoul MA, Sohif M, Ruslan MH (2011) Review of solar air collectors with thermal storage units. Renew Sustain Energ Rev 15:1476–1490

    Article  CAS  Google Scholar 

  18. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energ Convers Manag 45:1597–1615

    Article  CAS  Google Scholar 

  19. Zhang HZ, Wang XD, Wu DZ (2010) Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J Colloid Interf Sci 343:246–255

    Article  CAS  Google Scholar 

  20. Fallahi E, Barmar M, Kish MH (2010) Preparation of phase-change material microcapsules with paraffin or camel fat cores: application to fabrics. Iran Polym J 19:277–286

    CAS  Google Scholar 

  21. Su JF, Wang SB, Zhou JW, Huang Z, Zhao YH, Yuan XY, Zhang YY, Kou JB (2011) Fabrication and interfacial morphologies of methanol-melamine-formaldehyde (MMF) shell microPCMs/epoxy composites. Colloid Polymer Sci 289:169–177

    Article  CAS  Google Scholar 

  22. Su JF, Wang XY, Wang SB, Zhao YH, Zhu KY, Yuan XY (2011) Interface stability behaviors of methanol-melamine-formaldehyde shell microPCMs/epoxy matrix composites. Polymer Compos 32:810–820

    Article  CAS  Google Scholar 

  23. Gibson RF (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92:2793–2810

    Article  Google Scholar 

  24. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A-Appl S 41:1345–1367

    Article  Google Scholar 

  25. Rutz BH, Berg JC (2010) A review of the feasibility of lightening structural polymeric composites with voids without compromising mechanical properties. Adv Colloid Interface Sci 160:56–75

    Article  CAS  Google Scholar 

  26. Nayak R, Dora PT, Satapathy A (2010) A computational and experimental investigation on thermal conductivity of particle reinforced epoxy composites. Comput Mater Sci 48:576–581

    Article  CAS  Google Scholar 

  27. Porfiri M, Nguyen NQ, Gupta N (2009) Thermal conductivity of multiphase particulate composite materials. J Mater Sci 44:1540–1550

    Article  CAS  Google Scholar 

  28. Kumlutas D, Tavman IH (2006) A numerical and experimental study on thermal conductivity of particle filled polymer composites. J Thermoplast Compos 19:441–455

    Article  CAS  Google Scholar 

  29. Singh IV, Tanaka M, Endo M (2007) Effect of interface on the thermal conductivity of carbon nanotube composites. Int J Therm Sci 46:842–847

    Article  CAS  Google Scholar 

  30. Pal R (2008) Thermal conductivity of three-component composites of core-shell particles. Mat Sci Eng A-Struct 498:135–141

    Article  Google Scholar 

  31. Su JF, Wang SB, Zhang YY, Huang Z (2011) Physicochemical properties and mechanical characters of methanol-modified melamine-formaldehyde (MMF) shell microPCMs containing paraffin. Colloid Polymer Sci 289:111–119

    Article  CAS  Google Scholar 

  32. Fang Y, Kang HY, Wang WL, Liu H, Gao XN (2010) Study on polyethylene glycol/epoxy resin composite as a form-stable phase change material. Energ Convers Manag 51:2757–2761

    Article  CAS  Google Scholar 

  33. Su JF, Wang LX, Ren L (2006) Fabrication and thermal properties of MicroPCMs: used melamine-formaldehyde resin as shell material. J Appl Polymer Sci 101:1522–1528

    Article  CAS  Google Scholar 

  34. Xiao M, Feng B, Gong KC (2002) Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energ Convers Manag 43:103–108

    Article  CAS  Google Scholar 

  35. Yung KC, Zhu BL, Yue TM, Xie CS (2009) Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Compos Sci Tech 69:260–264

    Article  CAS  Google Scholar 

  36. Felske JD (2004) Effective thermal conductivity of composite spheres in a continuous medium with contact resistance. Int J Heat Mass Tran 47:3453–3461

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support of National Natural Science Foundation of China (No. 50803045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Feng Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, JF., Wang, XY., Huang, Z. et al. Thermal conductivity of microPCMs-filled epoxy matrix composites. Colloid Polym Sci 289, 1535–1542 (2011). https://doi.org/10.1007/s00396-011-2478-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2478-9

Keywords

Navigation