Skip to main content
Log in

Magnetic field intensity effect on plane electric capacitor characteristics and viscoelasticity of magnetorheological elastomer

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Magnetorheological (MR) elastomer was prepared using silicone rubber and soft magnetic carbonyl iron microspheres, and then examined as dielectric materials for manufacturing electric capacitors. As a specific element, capacity of the capacitors located in a magnetic field was found to be sensitive to both the MR suspension proportion to the silicone rubber and the intensity of the applied magnetic field. Viscoelastic characteristics of the MR elastomer, represented by storage modulus and creep behavior, were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Davis LC (1999) J Appl Phys 85:3348–3351

    Article  CAS  Google Scholar 

  2. An HN, Picken SJ, Mendes E (2010) Soft Matter 6:4497–4503

    Article  CAS  Google Scholar 

  3. Park BJ, Fang FF, Choi HJ (2010) Soft Matter 6:5246–5253

    Article  CAS  Google Scholar 

  4. de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Soft Matter 7:3701–3710

    Article  Google Scholar 

  5. Sun TL, Gong XL, Jiang WQ, Li JF, Xu ZB, Li WH (2008) Polym Test 27:520–526

    Article  CAS  Google Scholar 

  6. Bica I (2004) J Magn Magn Mater 283:335–343

    Article  CAS  Google Scholar 

  7. Bica I (2003) Mater Sci Eng B 98:89–93

    Article  Google Scholar 

  8. Bica I (2009) J Ind Eng Chem 15:233–237

    Article  CAS  Google Scholar 

  9. Guerrero-Sanchez C, Lara-Ceniceros T, Jimenez-Regalado E, Raşa M, Schubert US (2007) Adv Mater 19:1740–1747

    Article  CAS  Google Scholar 

  10. Fang FF, Liu YD, Choi HJ, Seo Y (2011) ACS Appl Mater Interf 3:3487–3495

    Article  CAS  Google Scholar 

  11. Choi HJ, Lee YH, Kim CA, Jhon MS (2000) J Mater Sci Lett 19:533–535

    Article  CAS  Google Scholar 

  12. Fang FF, Choi HJ, Joo J (2008) J Nanosci Nanotech 8:1559–1581

    Article  CAS  Google Scholar 

  13. Wang Y, Hu Y, Deng H, Gong X, Zhang P, Jiang W, Chen Z (2006) Polym Eng Sci 46:264–268

    Article  CAS  Google Scholar 

  14. Boczkowska A, Awietjan SF (2009) J Mater Sci 44:4104–4111

    Article  CAS  Google Scholar 

  15. Bica I (2009) Mater Lett 63:2230–2232

    Article  CAS  Google Scholar 

  16. Bica I (2009) J Ind Eng Chem 15:773–776

    Article  CAS  Google Scholar 

  17. Venkateswara Rao P, Maniprakash S, Srinivasan SM, Srinivasa AR (2010) Smart Mater Struct 19:085019

    Article  Google Scholar 

  18. Bica I (2011) J Ind Eng Chem 17:83–89

    Article  CAS  Google Scholar 

  19. Zając P, Kaleta J, Lewandowski D, Gasperowicz A (2010) Smart Mater Struct 19:045014

    Article  Google Scholar 

  20. Wu J, Gong X, Fan Y, Xia H (2010) Smart Mater Struct 19:105007

    Article  Google Scholar 

  21. Chen L, Gong XL, Jiang WQ, Yao JJ, Deng XX, Li WH (2010) J Mater Sci 42:5483–5489

    Article  Google Scholar 

  22. Bica I (2012) J Ind Eng Chem 18:483–486

    Article  CAS  Google Scholar 

  23. Jung HJ, Lee SJ, Jang DD, Kim IH, Koo JH, Khan F (2009) IEEE Trans Magn 45:3930–3933

    Article  Google Scholar 

  24. Chen L, Gong XL, Li WL (2007) Smart Mater Struct 16:2645–2650

    Article  Google Scholar 

  25. Deng HX, Gong XL, Wang LH (2006) Smart Mater Struct 15:N111

    Article  Google Scholar 

  26. Sun HL, Zhang PQ, Gong CL, Chen HB (2007) J Sound Vib 300:117–125

    Article  Google Scholar 

  27. Houng N, Zhang N, Du H (2009) Smart Mater Struct 18:074009

    Article  Google Scholar 

  28. Guan X, Dong X, Ou J (2008) J Magn Magn Mater 320:158–163

    Article  CAS  Google Scholar 

  29. Eem SH, Jung HJ, Koo JH (2011) IEEE Trans Magn 47:2901–2904

    Article  Google Scholar 

  30. Tian TF, Li WH, Alici G, Deng YM (2011) Rheol Acta 50:825–836

    Article  CAS  Google Scholar 

  31. Tian TF, Li WH, Deng YM (2011) Smart Mater Struct 20:025022

    Article  Google Scholar 

  32. Hiamtup P, Sirivat A, Jamieson AM (2008) J Colloid Interf Sci 325:122–129

    Article  CAS  Google Scholar 

  33. Li W, Zhou Y, Tian T, Alici G (2010) Front Mech Eng China 5:341–346

    Article  Google Scholar 

  34. Li WH, Du H, Chen G, Yeo SH (2002) Mater Sci Eng A Struct Mater Prop Microstruct Process 333:368–376

    Article  Google Scholar 

  35. Chotpattananont D, Sirivat A, Jamieson AM (2006) Polymer 47:3568–3575

    Article  CAS  Google Scholar 

  36. Ginder JM, Schlotter WF, Nichols ME (2001) Proc SPIE 4331:103–110

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (HJ Choi) was supported by the National Research Foundation (#43450-1), Korea (2011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ioan Bica or Hyoung Jin Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 372 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bica, I., Liu, Y.D. & Choi, H.J. Magnetic field intensity effect on plane electric capacitor characteristics and viscoelasticity of magnetorheological elastomer. Colloid Polym Sci 290, 1115–1122 (2012). https://doi.org/10.1007/s00396-012-2627-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2627-9

Keywords

Navigation