Skip to main content
Log in

Contact angle hysteresis: a review of fundamentals and applications

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Contact angle hysteresis is an important physical phenomenon. It is omnipresent in nature and also plays a crucial role in various industrial processes. Despite its relevance, there is a lack of consensus on how to incorporate a description of contact angle hysteresis into physical models. To clarify this, starting from the basic definition of contact angle hysteresis, we introduce the formalism and models for implementing contact angle hysteresis into relevant physical phenomena. Furthermore, we explain the influence of the contact angle hysteresis in physical phenomena relevant for industrial applications such as sliding drops, coffee stain phenomenon (in general evaporative self-assembly), and curtain and wire coating techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Joanny JF, De Gennes PG (1984) A model for contact-angle hysteresis. J Chem Phys 81(1):552–562

    Article  CAS  Google Scholar 

  2. Dussan EB, Chow RTP (1983) On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. J Fluid Mech 137(Dec):1–29

    Article  Google Scholar 

  3. De Gennes PG (1985) Wetting—statics and dynamics. Rev Mod Phys 57(3):827–863

    Article  Google Scholar 

  4. De Gennes PG, Brochard-Wyart F, Quéré D (2004) Capillarity and wetting phenomena. Springer, New York

    Google Scholar 

  5. Extrand CW (1998) A thermodynamic model for contact angle hysteresis. J Colloid Interface Sci 207(1):11–19

    Article  CAS  Google Scholar 

  6. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Wetting and spreading. Rev Mod Phys 81(2):739–805. doi:10.1103/RevModPhys.81.739

    Article  CAS  Google Scholar 

  7. Hyvaluoma J, Koponen A, Raiskinmaki P, Timonen J (2007) Droplets on inclined rough surfaces. Eur Phys J E 23(3):289–293. doi:10.1140/epje/i2007-10190-7

    Article  CAS  Google Scholar 

  8. Dettre RH, Johnson RE (1965) Contact angle hysteresis. 4. Contact angle measurements on heterogeneous surfaces. J Phys Chem-Us 69(5):1507–1510

    Article  CAS  Google Scholar 

  9. Johnson RE, Dettre RH (1964) Contact angle hysteresis. 3. Study of an idealized heterogeneous surface. J Phys Chem-Us 68(7):1744

    Article  CAS  Google Scholar 

  10. Bartell FE, Shepard JW (1953) Surface roughness as related to hysteresis of contact angles. 1. The system paraffin-water-air. J Phys Chem-Us 57(2):211–215

    Article  CAS  Google Scholar 

  11. Bartell FE, Shepard JW (1953) Surface roughness as related to hysteresis of contact angles. 2. The systems paraffin-3 molar calcium chloride solution-air and paraffin-glycerol-air. J Phys Chem-Us 57(4):455–458

    Article  CAS  Google Scholar 

  12. Furmidge CG (1962) Studies at phase interfaces. 1. Sliding of liquid drops on solid surfaces and a theory for spray retention. J Coll Sci Imp U Tok 17(4):309. doi:10.1016/0095-8522(62)90011-9

    CAS  Google Scholar 

  13. Bikerman JJ (1950) Sliding of drops from surfaces of different roughnesses. J Coll Sci Imp U Tok 5(4):349–359

    CAS  Google Scholar 

  14. Dussan EB (1987) On the ability of drops to stick to surfaces of solid. 3. The influences of the motion of the surrounding fluid on dislodging drops. J Fluid Mech 174:381–397

    Article  Google Scholar 

  15. Dussan EB (1985) On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. 2. Small drops or bubbles having contact angles of arbitrary size. J Fluid Mech 151(Feb):1–20

    Article  Google Scholar 

  16. Huh C, Scriven LE (1971) Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J Colloid Interface Sci 35(1):85–101. doi:10.1016/0021-9797(71)90188-3

    Article  CAS  Google Scholar 

  17. Blake TD, Haynes JM (1969) Kinetics of liquid/liquid displacement. J Colloid Interface Sci 30(3):421

    Article  CAS  Google Scholar 

  18. Voinov OV (1976) Hydrodynamics of wetting. Fluid Dyn 11(5):714–721. doi:10.1007/BF01012963

    Article  Google Scholar 

  19. Cox RG (1986) The dynamics of the spreading of liquids on a solid surface. 1. Viscous flow. J Fluid Mech 168:169–194

    Article  CAS  Google Scholar 

  20. Panchagnula MV, Vedantam S (2007) Comment on how Wenzel and Cassie were wrong by Gao and McCarthy. Langmuir 23(26):13242–13242. doi:10.1021/La7022117

    Article  CAS  Google Scholar 

  21. Vedantam S, Panchagnula MV (2007) Phase field modeling of hysteresis in sessile drops. Phys Rev Lett 99(17):176102. doi:10.1103/Physrevlett.99.176102

    Article  CAS  Google Scholar 

  22. Marmur A, Bittoun E (2009) When Wenzel and Cassie are right: reconciling local and global considerations. Langmuir 25(3):1277–1281. doi:10.1021/La802667b

    Article  CAS  Google Scholar 

  23. Tadmor R, Chaurasia K, Yadav PS, Leh A, Bahadur P, Dang L, Hoffer WR (2008) Drop retention force as a function of resting time. Langmuir 24(17):9370–9374. doi:10.1021/La7040696

    Article  CAS  Google Scholar 

  24. Duursma GR, Sefiane K, David S (2010) Advancing and receding contact lines on patterned structured surfaces. Chem Eng Res Des 88(5-6A):737–743. doi:10.1016/j.cherd.2009.10.004

    Article  CAS  Google Scholar 

  25. Debuisson D, Senez V, Arscott S (2011) Tunable contact angle hysteresis by micropatterning surfaces. Appl Phys Lett 98(18):184101–184103

    Article  CAS  Google Scholar 

  26. Di Mundo R, Palumbo F (2011) Comments regarding ‘an essay on contact angle measurements’. Plasma Process Polym 8(1):14–18. doi:10.1002/ppap.201000090

    Article  CAS  Google Scholar 

  27. Müller M, Oehr C (2011) Comments on “an essay on contact angle measurements” by Strobel and Lyons. Plasma Process Polym 8(1):19–24. doi:10.1002/ppap.201000115

    Article  CAS  Google Scholar 

  28. Strobel M, Lyons CS (2011) An essay on contact angle measurements. Plasma Process Polym 8(1):8–13. doi:10.1002/ppap.201000041

    Article  CAS  Google Scholar 

  29. Bourges-Monnier C, Shanahan MER (1995) Influence of evaporation on contact angle. Langmuir 11(7):2820–2829. doi:10.1021/la00007a076

    Article  CAS  Google Scholar 

  30. Ruiz-Cabello FJM, Rodriguez-Valverde MA, Marmur A, Cabrerizo-Vilchez MA (2011) Comparison of sessile drop and captive bubble methods on rough homogeneous surfaces: a numerical study. Langmuir 27(15):9638–9643. doi:10.1021/la201248z

    Article  CAS  Google Scholar 

  31. Tadmor R, Bahadur P, Leh A, N’guessan HE, Jaini R, Dang L (2009) Measurement of lateral adhesion forces at the interface between a liquid drop and a substrate. Phys Rev Lett 103(26):266101. doi:10.1103/Physrevlett.103.266101

    Article  CAS  Google Scholar 

  32. Erbil HY, McHale G, Rowan SM, Newton MI (1999) Determination of the receding contact angle of sessile drops on polymer surfaces by evaporation. Langmuir 15(21):7378–7385

    Article  CAS  Google Scholar 

  33. Bormashenko E, Bormashenko Y, Whyman G, Pogreb R, Musin A, Jager R, Barkay Z (2008) Contact angle hysteresis on polymer substrates established with various experimental techniques, its interpretation, and quantitative characterization. Langmuir 24(8):4020–4025. doi:10.1021/La703875b

    Article  CAS  Google Scholar 

  34. Krasovitski B, Marmur A (2005) Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plate. Langmuir 21(9):3881–3885. doi:10.1021/La0474565

    Article  CAS  Google Scholar 

  35. Pierce E, Carmona FJ, Amirfazli A (2008) Understanding of sliding and contact angle results in tilted plate experiments. Colloid Surf A 323(1–3):73–82. doi:10.1016/j.colsurfa.2007.09.032

    Article  CAS  Google Scholar 

  36. Buehrle J, Herminghaus S, Mugele F (2003) Interface profiles near three-phase contact lines in electric fields. Phys Rev Lett 91(8):086101. doi:10.1103/Physrevlett.91.086101

    Article  CAS  Google Scholar 

  37. Srinivasan S, McKinley GH, Cohen RE (2011) Assessing the accuracy of contact angle measurements for sessile drops on liquid-repellent surfaces. Langmuir 27(22):13582–13589. doi:10.1021/la2031208

    Article  CAS  Google Scholar 

  38. Rodriguez-Valverde MA, Montes Ruiz-Cabello FJ, Cabrerizo-Vilchez MA (2011) A new method for evaluating the most-stable contact angle using mechanical vibration. Soft Matter 7(1):53–56

    Article  CAS  Google Scholar 

  39. Montes Ruiz-Cabello FJ, Rodríguez-Valverde MA, Cabrerizo-Vílchez MA (2011) Comparison of the relaxation of sessile drops driven by harmonic and stochastic mechanical excitations. Langmuir 27(14):8748–8752. doi:10.1021/la2010858

    Article  CAS  Google Scholar 

  40. Meiron TS, Marmur A, Saguy IS (2004) Contact angle measurement on rough surfaces. J Colloid Interface Sci 274(2):637–644. doi:10.1016/j.jcis.2004.02.036

    Article  CAS  Google Scholar 

  41. Decker EL, Garoff S (1996) Using vibrational noise to probe energy barriers producing contact angle hysteresis. Langmuir 12(8):2100–2110. doi:10.1021/la951021n

    Article  CAS  Google Scholar 

  42. Volpe CD, Maniglio D, Morra M, Siboni S (2002) The determination of a ‘stable-equilibrium’ contact angle on heterogeneous and rough surfaces. Colloids Surf, A Physicochem Eng Asp 206(1–3):47–67

    Article  Google Scholar 

  43. Tadmor R (2004) Line energy and the relation between advancing, receding, and young contact angles. Langmuir 20(18):7659–7664. doi:10.1021/la049410h

    Article  CAS  Google Scholar 

  44. Rodriguez-Valverde MA, Ruiz-Cabello FJM, Gea-Jodar PM, Kamusewitz H, Cabrerizo-Vilchez MA (2010) A new model to estimate the Young contact angle from contact angle hysteresis measurements. Colloid Surf A 365(1–3):21–27. doi:10.1016/j.colsurfa.2010.01.055

    Article  CAS  Google Scholar 

  45. Young T (1805) Philos Trans R Soc Lond 95(2):65

    Google Scholar 

  46. Boruvka L, Neumann AW (1977) Generalization of classical theory of capillarity. J Chem Phys 66(5464)

  47. Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17(28):R705–R774. doi:10.1088/0953-8984/17/28/R01

    Article  CAS  Google Scholar 

  48. Schneemilch M, Hayes RA, Petrov JG, Ralston J (1998) Dynamic wetting and dewetting of a low-energy surface by pure liquids. Langmuir 14:7047

    Article  CAS  Google Scholar 

  49. Blake TD, Clarke A, Ruschak KJ (1994) Hydrodynamic assist of dynamic wetting. AICHE J 40(2):229–242

    Article  CAS  Google Scholar 

  50. Petrov JG, Ralston J, Hayes RA (1999) Dewetting dynamics on heterogeneous surfaces. A molecular-kinetic treatment. Langmuir 15(9):3365–3373

    Article  CAS  Google Scholar 

  51. Petrov JG, Ralston J, Schneemilch M, Hayes RA (2003) Dynamics of partial wetting and dewetting in well-defined systems. J Phys Chem B 107(7):1634–1645. doi:10.1021/Jp026723h

    Article  CAS  Google Scholar 

  52. Yarnold G, Mason B (1949) Proc Phys Soc London B62:121

    Google Scholar 

  53. Petrov PG, Petrov JG (1992) A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 8(7):1762–1767

    Article  CAS  Google Scholar 

  54. de Ruijter MJ, De Coninck J, Oshanin G (1999) Droplet spreading: partial wetting regime revisited. Langmuir 15(6):2209–2216

    Article  Google Scholar 

  55. Brochard F, Degennes PG (1992) Shear-dependent slippage at a polymer solid interface. Langmuir 8(12):3033–3037

    Article  CAS  Google Scholar 

  56. Cassie ABD (1952) Contact angles. Discuss Faraday Soc 57(5041)

  57. Wenzel RN (1936) Ind Eng Chem 28:988

    Article  CAS  Google Scholar 

  58. Wenzel RN (1949) J Phys Chem 53:1466

    Article  CAS  Google Scholar 

  59. Gao LC, McCarthy TJ (2007) Reply to “comment on how Wenzel and Cassie were wrong by Gao and McCarthy”. Langmuir 23(26):13243–13243. doi:10.1021/La703004v

    Article  CAS  Google Scholar 

  60. Gao LC, McCarthy TJ (2007) How Wenzel and Cassie were wrong. Langmuir 23(7):3762–3765. doi:10.1021/La062634a

    Article  CAS  Google Scholar 

  61. Marmur A (1998) Contact-angle hysteresis on heterogeneous smooth surfaces: theoretical comparison of the captive bubble and drop methods. Colloid Surf A 136(1–2):209–215

    Article  CAS  Google Scholar 

  62. Huh C, Mason SG (1977) Effects of surface-roughness on wetting (theoretical). J Colloid Interface Sci 60(1):11–38

    Article  CAS  Google Scholar 

  63. Pomeau Y, Vannimenus J (1985) Contact-angle on heterogeneous surfaces—weak heterogeneities. J Colloid Interface Sci 104(2):477–488

    Article  CAS  Google Scholar 

  64. Opik U (2000) Contact-angle hysteresis caused by a random distribution of weak heterogeneities on a solid surface. J Colloid Interface Sci 223(2):143–166

    Article  CAS  Google Scholar 

  65. Long J, Hyder MN, Huang RYM, Chen P (2005) Thermodynamic modeling of contact angles on rough, heterogeneous surfaces. Adv Colloid and Interf Sci 118(1–3):173–190. doi:10.1016/j.cis.2005.07.004

    Article  CAS  Google Scholar 

  66. Yang XF (1995) Equilibrium contact angle and intrinsic wetting hysteresis. Appl Phys Lett 67(15):2249–2251

    Article  CAS  Google Scholar 

  67. Extrand CW, Kumagai Y (1995) Liquid drops on an inclined plane—the relation between contact angles, drop shape, and retentive force. J Colloid Interface Sci 170(2):515–521

    Article  CAS  Google Scholar 

  68. Whyman G, Bormashenko E, Stein T (2008) The rigorous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem Phys Lett 450(4–6):355–359. doi:10.1016/j.cplett.2007.11.033

    Article  CAS  Google Scholar 

  69. Walker SW, Shapiro B, Nochetto RH (2009) Electrowetting with contact line pinning: computational modeling and comparisons with experiments. Phys Fluids 21(10). doi:10210310.1063/1.3254022

  70. Oh JM, Ko SH, Kang KH (2010) Analysis of electrowetting-driven spreading of a drop in air. Phys Fluids 22(3):10.1063/1.3360331

    Article  CAS  Google Scholar 

  71. Hocking LM (1981) Sliding and spreading of thin two-dimensional drops. Q J Mech Appl Math 34(Feb):37–55

    Article  Google Scholar 

  72. Moriarty JA, Schwartz LW (1992) Effective slip in numerical calculations of moving-contact-line problems. J Eng Math 26(1):81–86

    Article  Google Scholar 

  73. Renardy M, Renardy Y, Li J (2001) Numerical simulation of moving contact line problems using a volume-of-fluid method. J Comput Phys 171(1):243–263

    Article  CAS  Google Scholar 

  74. Koplik J, Banavar JR, Willemsen JF (1988) Molecular dynamics of Poiseuille flow and moving contact lines. Phys Rev Lett 60(13):1282–1285

    Article  Google Scholar 

  75. Koplik J, Banavar JR, Willemsen JF (1989) Molecular dynamics of fluid flow at solid surfaces. Phys Fluids A Fluid Dyn 1(5):781–794

    Article  CAS  Google Scholar 

  76. Thompson PA, Robbins MO (1989) Simulations of contact-line motion—slip and the dynamic contact angle. Phys Rev Lett 63(7):766–769

    Article  CAS  Google Scholar 

  77. Heine DR, Grest GS, Lorenz CD, Tsige M, Stevens MJ (2004) Atomistic simulations of end-linked poly(dimethylsiloxane) networks: structure and relaxation. Macromolecules 37(10):3857–3864. doi:10.1021/Ma035760j

    Article  CAS  Google Scholar 

  78. Heine DR, Grest GS, Webb EB (2003) Spreading dynamics of polymer nanodroplets. Phys Rev E 68(6):061603. doi:10.1103/Physreve.68.061603

    Article  CAS  Google Scholar 

  79. Martic G, Gentner F, Seveno D, Coulon D, De Coninck J, Blake TD (2002) A molecular dynamics simulation of capillary imbibition. Langmuir 18(21):7971–7976. doi:10.1021/La020068n

    Article  CAS  Google Scholar 

  80. Martic G, Gentner F, Seveno D, De Coninck J, Blake TD (2004) The possibility of different time scales in the dynamics of pore imbibition. J Colloid Interface Sci 270(1):171–179. doi:10.1016/j.jcis.2003.08.046

    Article  CAS  Google Scholar 

  81. Jansons KM (1986) The motion of a viscous drop sliding down a Hele-Shaw cell. J Fluid Mech 163(-1):59–67. doi:10.1017/S0022112086002203

    Article  Google Scholar 

  82. ElSherbini A, Jacobi A (2006) Retention forces and contact angles for critical liquid drops on non-horizontal surfaces. J Colloid Interface Sci 299(2):841–849. doi:10.1016/j.jcis.2006.02.018

    Article  CAS  Google Scholar 

  83. Kim H-Y, Lee HJ, Kang BH (2002) Sliding of liquid drops down an inclined solid surface. J Colloid Interface Sci 247(2):372–380

    Article  CAS  Google Scholar 

  84. Beltrame P, Hanggi P, Thiele U (2009) Depinning of three-dimensional drops from wettability defects. EPL 86(2). doi:10.1209/0295-5075/86/24006

  85. ’t Mannetje DJCM, Murade CU, van den Ende D, Mugele F (2011) Electrically assisted drop sliding on inclined planes. Appl Phys Lett 98(1):014102. doi:10.1063/1.3533362

    Article  CAS  Google Scholar 

  86. Winkels KG, Peters IR, Evangelista F, Riepen M, Daerr A, Limat L, Snoeijer JH (2011) Receding contact lines: from sliding drops to immersion lithography. Eur Phys J Spec Top 192(1):195–205. doi:10.1140/epjst/e2011-01374-6

    Article  CAS  Google Scholar 

  87. Snoeijer JH, Rio E, Le Grand N, Limat L (2005) Self-similar flow and contact line geometry at the rear of cornered drops. Phys Fluids 17(7):072101. doi:10.1063/1.1946607

    Article  CAS  Google Scholar 

  88. Tadmor R (2011) Approaches in wetting phenomena. Soft Matter 7(5):1577–1580. doi:10.1039/c0sm00775g

    Article  CAS  Google Scholar 

  89. Li F, Mugele F (2008) How to make sticky surfaces slippery: contact angle hysteresis in electrowetting with alternating voltage. Appl Phys Lett 92(24):2441081–2441083. doi:10.1063/1.2945803

    Google Scholar 

  90. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Contact line deposits in an evaporating drop. Phys Rev E 62(1):756–765

    Article  CAS  Google Scholar 

  91. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653):827–829

    Article  CAS  Google Scholar 

  92. Eral HB, van den Ende D, Mugele F, Duits MHG (2009) Influence of confinement by smooth and rough walls on particle dynamics in dense hard-sphere suspensions. Phys Rev E 80(6):061403. doi:10.1103/Physreve.80.061403

    Article  CAS  Google Scholar 

  93. Harris DJ, Hu H, Conrad JC, Lewis JA (2007) Patterning colloidal films via evaporative lithography. Phys Rev Lett 98(14). doi:10.1103/Physrevlett.98.148301

  94. Choi S, Stassi S, Pisano AP, Zohdi TI (2010) Coffee-ring effect-based three dimensional patterning of micro/nanoparticle assembly with a single droplet. Langmuir 26(14):11690–11698. doi:10.1021/La101110t

    Article  CAS  Google Scholar 

  95. Bodiguel H, Doumenc F, Guerrier B (2010) Stick-slip patterning at low capillary numbers for an evaporating colloidal suspension. Langmuir 26(13):10758–10763. doi:10.1021/La100547j

    Article  CAS  Google Scholar 

  96. Eral HB, Augustine DM, Duits MHG, Mugele F (2011) Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting. Soft Matter 7(10):4954–4958. doi:10.1039/C1sm05183k

    Article  CAS  Google Scholar 

  97. Lang S, Botan V, Oettel M, Hajnal D, Franosch T, Schilling R (2010) Glass transition in confined geometry. Phys Rev Lett 105(12). doi:10.1103/Physrevlett.105.125701

  98. Jamie EAG, Dullens RPA, Aarts DGAL (2011) Surface effects on the demixing of colloid–polymer systems. J Phys Chem B 115(45):13168–13174. doi:10.1021/Jp207250q

    Article  CAS  Google Scholar 

  99. Nagamanasa KH, Gokhale S, Ganapathy R, Sood AK (2011) Confined glassy dynamics at grain boundaries in colloidal crystals. Proc Natl Acad Sci USA 108(28):11323–11326. doi:10.1073/pnas.1101858108

    Article  CAS  Google Scholar 

  100. de Villeneuve VWA, Derendorp L, Verboekend D, Vermolen ECM, Kegel WK, Lekkerkerker HNW, Dullens RPA (2009) Grain boundary pinning in doped hard sphere crystals. Soft Matter 5(12):2448–2452. doi:10.1039/B817255b

    Article  CAS  Google Scholar 

  101. Holscher H, Ebeling D, Schwarz UD (2008) Friction at atomic-scale surface steps: experiment and theory. Phys Rev Lett 101(24). doi:10.1103/Physrevlett.101.246105

  102. Marin AG, Gelderblom H, Lohse D, Snoeijer JH (2011) Rush-hour in evaporating coffee drops. Phys Fluids 23(9). doi:10.1063/1.3640018

  103. Marin AG, Gelderblom H, Lohse D, Snoeijer JH (2011) Order-to-disorder transition in ring-shaped colloidal stains. Phys Rev Lett 107(8). doi:10.1103/Physrevlett.107.085502

  104. Andrieu C, Sykes C, Brochard F (1994) Average spreading parameter on heterogeneous surfaces. Langmuir 10(7):2077–2080

    Article  CAS  Google Scholar 

  105. Brunet P, Eggers J, Deegan RD (2009) Motion of a drop driven by substrate vibrations. Eur Phys J Spec Top 166:11–14. doi:10.1140/epjst/e2009-00870-6

    Article  Google Scholar 

  106. Brunet P, Eggers J, Deegan RD (2007) Vibration-induced climbing of drops. Phys Rev Lett 99(14):144501. doi:10.1103/Physrevlett.99.144501

    Article  CAS  Google Scholar 

  107. Noblin X, Kofman R, Celestini F (2009) Ratchetlike motion of a shaken drop. Phys Rev Lett 102(19):194504. doi:10.1103/Physrevlett.102.194504

    Article  CAS  Google Scholar 

  108. Blake TD, Bracke M, Shikhmurzaev YD (1999) Experimental evidence of nonlocal hydrodynamic influence on the dynamic contact angle. Phys Fluids 11(8):1995–2007

    Article  CAS  Google Scholar 

  109. Blake TD, Clarke A, Stattersfield EH (2000) An investigation of electrostatic assist in dynamic wetting. Langmuir 16(6):2928–2935

    Article  CAS  Google Scholar 

  110. Ziegler J, Snoeijer JH, Eggers J (2009) Film transitions of receding contact lines. Eur Phys J Spec Top 166:177–180. doi:10.1140/epjst/e2009-00902-3

    Article  Google Scholar 

  111. Lukyanov AV, Shikhmurzaev YD (2007) Effect of flow field and geometry on the dynamic contact angle. Phys Rev E 75(5):051604. doi:10.1103/PhysRevE.75.051604

    Article  CAS  Google Scholar 

  112. Shikhmurzaev YD (1997) Moving contact lines in liquid/liquid/solid systems. J Fluid Mech 334:211–249

    Article  CAS  Google Scholar 

  113. Blake TD, Dobson RA, Ruschak KJ (2004) Wetting at high capillary numbers. J Colloid Interface Sci 279(1):198–205. doi:10.1016/j.jcis.2004.06.057

    Article  CAS  Google Scholar 

  114. Nelson WC, Sen P, Kim CJ (2011) Dynamic contact angles and hysteresis under electrowetting-on-dielectric. Langmuir 27(16):10319–10326. doi:10.1021/la2018083

    Article  CAS  Google Scholar 

  115. Wang Y, Bhushan B (2009) Liquid microdroplet sliding on hydrophobic surfaces in the presence of an electric field. Langmuir 25(16):9208–9218. doi:10.1021/la903460a

    Article  CAS  Google Scholar 

  116. Rayleigh L (1879) On the capillary phenomena of jets. Proc R Soc London 29(71):196–199

    Google Scholar 

  117. Carroll BJ (1976) Accurate measurement of contact-angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems. J Colloid Interface Sci 57(3):488–495

    Article  CAS  Google Scholar 

  118. Carroll BJ (1986) Equilibrium conformations of liquid drops on thin cylinders under forces of capillarity—a theory for the roll-up process. Langmuir 2(2):248–250

    Article  CAS  Google Scholar 

  119. Carroll BJ (1984) The equilibrium of liquid-drops on smooth and rough circular cylinders. J Colloid Interface Sci 97(1):195–200

    Article  CAS  Google Scholar 

  120. Eral HB, de Ruiter J, de Ruiter R, Oh JM, Semprebon C, Brinkmann M, Mugele F (2011) Drops on functional fibers: from barrels to clamshells and back. Soft Matter 7(11):5138–5143. doi:10.1039/C0sm01403f

    Article  CAS  Google Scholar 

  121. Eral HB, Manukyan G, Oh JM (2011) Wetting of a drop on a sphere. Langmuir 27(9):5340–5346. doi:10.1021/La104628q

    Article  CAS  Google Scholar 

  122. Quere D (1999) Fluid coating on a fiber. Annu Rev Fluid Mech 31:347–384

    Article  Google Scholar 

  123. Lorenceau E, Senden T, Quére D (2006) Wetting of fibers. In: Weiss RG, Terech P (eds) Molecular gels. Materials with self-assembled fibrillar networks. Springer, Dordrecht, pp 223–237

    Google Scholar 

  124. Aran HC, Chinthaginjala JK, Groote R, Roelofs T, Lefferts L, Wessling M, Lammertink RGH (2011) Porous ceramic mesoreactors: a new approach for gas–liquid contacting in multiphase microreaction technology. Chem Eng J 169(1–3):239–246. doi:10.1016/j.cej.2010.11.005

    Article  CAS  Google Scholar 

  125. Aran HC, Benito SP, Luiten-Olieman MWJ, Er S, Wessling M, Lefferts L, Benes NE, Lammertink RGH (2011) Carbon nanofibers in catalytic membrane microreactors. J Membr Sci 381(1–2):244–250. doi:10.1016/j.memsci.2011.07.037

    Article  CAS  Google Scholar 

  126. Agiral A, Eral HB, van den Ende D, Gardeniers JGE (2011) Charge injection from carbon nanofibers into hexane under ambient conditions. IEEE Trans Electron Dev 58(10):3514–3518. doi:10.1109/Ted.2011.2160947

    Article  CAS  Google Scholar 

  127. Oguz EC, Messina R, Lowen H (2011) Helicity in cylindrically confined Yukawa systems. EPL 94(2):28005. doi:10.1209/0295-5075/94/28005

    Article  CAS  Google Scholar 

  128. Oguz EC, Messina R, Lowen H (2009) Multilayered crystals of macroions under slit confinement. J Phys Condens Matter 21(42):424110. doi:10.1088/0953-8984/21/42/424110

    Article  CAS  Google Scholar 

  129. Oguz EC, Messina R, Lowen H (2009) Crystalline multilayers of the confined Yukawa system. EPL 86(2):28002. doi:10.1209/0295-5075/86/28002

    Article  CAS  Google Scholar 

  130. Demirors AF, Johnson PM, van Kats CM, van Blaaderen A, Imhof A (2010) Directed self-assembly of colloidal dumbbells with an electric field. Langmuir 26(18):14466–14471. doi:10.1021/La102134w

    Article  CAS  Google Scholar 

  131. Marechal M, Kortschot RJ, Demirors AF, Imhof A, Dijkstra M (2010) Phase behavior and structure of a new colloidal model system of bowl-shaped particles. Nano Lett 10(5):1907–1911. doi:10.1021/Nl100783g

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Eral.

Additional information

This article is part of the Topical Collection on Contact Angle Hysteresis.

H.B. Eral and D.J.C.M. ’t Mannetje contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eral, H.B., ’t Mannetje, D.J.C.M. & Oh, J.M. Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym Sci 291, 247–260 (2013). https://doi.org/10.1007/s00396-012-2796-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2796-6

Keywords

Navigation