Skip to main content
Log in

A nanocomposite interpenetrating hydrogel with high toughness: effects of the posttreatment and molecular weight

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Previously, we prepared a tough nanocomposite interpenetrating hydrogel by chemical crosslinking of acrylamide (AM) with vinyl-modified silica nanoparticles (VSNPs), combined with physical crosslinking of polyvinyl alcohol (PVA). It is well-known that posttreatment method and molecular weight play important roles in the mechanical properties of the tough hydrogels. In this paper, different post-treatment methods, i.e., freeze-thaw and annealing-swelling and varying PVA degree of polymerization (500 and 1700) were used to prepare the nanocomposite interpenetrating hydrogels. The effects of posttreatment and PVA molecular weight on the mechanical and swelling properties were investigated in detail. Tensile tests showed that annealing-swelling process exerted a more pronounced influence on elevating the tensile strength of nanocomposite interpenetrating hydrogels, which arose from the increased crystallization degree of PVA and the denser network. Hydrogels with lower PVA molecular weight have higher tensile strength after freeze-thaw cycle than that with higher PVA molecular weight. Cyclic loading–unloading tests revealed that the gels with lower molecular weight of PVA can dissipate higher energy at 100% strain. The swelling kinetic study revealed that the swelling behaviors of nanocomposite interpenetrating hydrogels followed the pseudo-second-order dynamic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chang G, Chen Y, Li Y, Li S, Huang F, Shen Y, Xie A (2015) Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy. Carbohydr Polym 122:336–342

    Article  CAS  PubMed  Google Scholar 

  2. Han XD, Zhang W, Yu K, Jia QM, Shan SY, Su HY (2017) Advances in the application of magnetic hydrogels as drug carriers. Mater Rev 31(15):30–35

    Google Scholar 

  3. Chen C, Zhang T, Dai B, Zhang H, Chen X, Yang J, Liu J, Sun D (2016) Rapid fabrication of composite hydrogel microfibers for weavable and sustainable antibacterial applications. ACS Sustain Chem Eng 4:6534–6542

    Article  CAS  Google Scholar 

  4. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879

    Article  CAS  PubMed  Google Scholar 

  5. Wang WB, Kang YR, Wang AQ (2013) One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions. J Polym Res 20:101

    Article  CAS  Google Scholar 

  6. Ryzhuk V, Zeng XX, Wang X (2017) Human amnion extracellular matrix derived bioactive hydrogel for cell delivery and tissue engineering. Mater Sci Eng C 85:191–202

    Article  CAS  Google Scholar 

  7. Appel EA, del Barrio J, Loh XJ, Scherman OA (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41(18):6195–6214

    Article  CAS  PubMed  Google Scholar 

  8. Yang W, Bai T, Carr LR (2012) The effect of lightly crosslinked poly(carboxybetaine) hydrogel coating on the performance of sensors in whole blood. Biomaterials 33(32):7945–7951

    Article  CAS  PubMed  Google Scholar 

  9. Sorber J, Steiner G, Schulz V (2008) Hydrogel-based piezoresistive pH sensors: investigations using FT-IR attenuated total reflection spectroscopic imaging. Anal Chem 80(8):2957–2962

    Article  CAS  PubMed  Google Scholar 

  10. Ito K (2007) Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polym J 39:489–499

    Article  CAS  Google Scholar 

  11. Peng L, Zhang HJ, Feng AC, Huo M, Wang ZL, Hu J, Gao WP, Yuan JY (2015) Electrochemical redox responsive supramolecular self-healing hydrogels based on host–guest interaction. Polym Chem 6:3652–3659

    Article  CAS  Google Scholar 

  12. Peak CW, Wilker JJ, Schmidt G (2013) A review on tough and sticky hydrogels. Colloid Polym Sci 291(9):2031–2047

    Article  CAS  Google Scholar 

  13. Tao LL, Heikki T, Henrik T (1999) Effect of hydrophobicity of a drug on its release from hydrogels with different topological structures. J Appl Polym Sci 73(6):1031–1039

    Article  Google Scholar 

  14. Daniele MA, Adams AA, Naciri J (2014) Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 35(6):1845–1856

    Article  CAS  PubMed  Google Scholar 

  15. Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 35:10162–10171

    Article  CAS  Google Scholar 

  16. Zhu MF, Liu Y, Sun B, Zhang W, Liu XL, Yu H, Zhang Y, Kuckling D, Adler HP (2006) A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation. Macromol Rapid Commun 27:1023–1028

    Article  CAS  Google Scholar 

  17. Kostina NY, Sharifi S, Pereira AS, Michálek J, Grijpma DW, Rodriguez-Emmenegger C (2013) Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-HEMA) nanocomposite hydrogels with superior mechanical properties. J Mater Chem B 1:5644–5650

    Article  CAS  PubMed  Google Scholar 

  18. Li ZY, Su YL, Xie BQ, Wang HL, Wen T, He CC, Shen H, Wu DC, Wang DJ (2013) A tough hydrogel–hydroxyapatite bone-like composite fabricated in situ by the electrophoresis approach. J Mater Chem B 1:1755–1764

    Article  CAS  PubMed  Google Scholar 

  19. Hu J, Kurokawa T, Hiwatashi TK, Nakajima T, Wu ZL, Liang SM, Gong JP (2012) Structure optimization and mechanical model for microgel-reinforced hydrogels with high strength and toughness. Macromolecules 45:5218–5228

    Article  CAS  Google Scholar 

  20. Hu J, Hiwatashi K, Kurokawa T, Liang SM, Wu ZL, Gong JP (2011) Microgel-reinforced hydrogel films with high mechanical strength and their visible mesoscale fracture structure. Macromolecules 44:7775–7781

    Article  CAS  Google Scholar 

  21. Gao GR, Du GL, Cheng YJ, Fu J (2014) Tough nanocomposite double network hydrogels reinforced with clay nanorods through covalent bonding and reversible chain adsorption. J Mater Chem B 2:1539–1549

    Article  CAS  PubMed  Google Scholar 

  22. Aranaz I, Martínez-Campos E, Nash ME, Tardajos MG, Reinecke H, Elvira C, Ramos V, López-Lacomba JL, Gallardo A (2014) Pseudo-double network hydrogels with unique properties as supports for cell manipulation. J Mater Chem B 2:3839–3848

    Article  CAS  PubMed  Google Scholar 

  23. Yin HY, Akasaki T, Sun TL, Nakajima T, Kurokawa T, Nonoyama T, Taira T, Saruwatari Y, Gong JP (2013) Double network hydrogels from polyzwitterions: high mechanical strength and excellent anti-biofouling properties. J Mater Chem B 1:3685–3693

    Article  CAS  PubMed  Google Scholar 

  24. Pan T, Zhang Y, Wang CH, Gao H, Wen BY, Yao BQ (2020) Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability. Compos Sci Technol 188:107991

    Article  CAS  Google Scholar 

  25. Qiu S, Ge NJ, Sun DK (2016) Synthesis and characterization of magnetic polyvinyl alcohol (PVA) hydrogel microspheres for the embolization of blood vessel. IEEE Trans Biomed Eng 63(4):730

    PubMed  Google Scholar 

  26. Rodrigues IR, Forte MMC, Azambuja DS (2007) Synthesis and characterization of hybrid polymeric networks (HPN) based on polyvinyl alcohol/chitosan. React Funct Polym 67(8):708–715

    Article  CAS  Google Scholar 

  27. Pritchard JG, Fung YLLC (1976) Determination of vicinal hydroxyl groups in poly(vinyl alcohol) (pva). Talanta 23(3):237–239

    Article  CAS  PubMed  Google Scholar 

  28. Bunn CW (1948) Crystal structure of polyvinyl alcohol. Nature 161(4102):929–930

    Article  CAS  Google Scholar 

  29. Bodugoz-Senturk H, Macias CE, Kung JH, Muratoglu OK (2009) Poly (vinyl alcohol)-acrylamide hydrogels as load-bearing cartilage substitute. Biomaterials 30:589–596

    Article  CAS  PubMed  Google Scholar 

  30. Park KR, Nho YC (2003) Synthesis of PVA/PVP hydrogels having two-layer by radiation and their physical properties. Radiat Phys Chem 67:361–365

    Article  CAS  Google Scholar 

  31. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548

    Article  CAS  Google Scholar 

  32. Liu Y, Vrana N, Cahill P, Mcguinness GB (2009) Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B Appl Biomater 90:492–502

    Article  CAS  PubMed  Google Scholar 

  33. Cha WI, Hyon SH, Oka M (1996) Mechanical and wear properties of poly(vinyl alcohol) hydrogels. Macromol Symp 109(1):115–126

    Article  CAS  Google Scholar 

  34. Ou KK, Dong X, Qin CL, Ji XN, He JX (2017) Properties and toughening mechanisms of PVA/PAM double-network hydrogels prepared by freeze-thawing and anneal-swelling. Mater Sci Eng C 77:1017–1026

    Article  CAS  Google Scholar 

  35. Zhang HJ, Wang X, Huang HX, Yang B, Wang C, Sun H (2019) Nanocomposite interpenetrating hydrogels with high toughness and good self-recovery. Colloid Polym Sci 297:821–830

    Article  CAS  Google Scholar 

  36. Gupta S, Goswami S, Sinha A (2012) A combined effect of freeze-thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels. Biomed Mater 7(1):015006

    Article  PubMed  CAS  Google Scholar 

  37. Martens P, Blundo J, Nilasaroya A (2007) Effect of poly(vinyl alcohol) macromer chemistry and chain interactions on hydrogel mechanical properties. Chem Mater 19(10):2641–2648

    Article  CAS  Google Scholar 

  38. Temenoff JS, Athanasiou KA, Lebaron RG (2002) Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J Biomed Mater Res 59(3):429–437

    Article  CAS  PubMed  Google Scholar 

  39. Shi FK, Wang XP, Guo RH, Zhong M, Xie XM (2015) Highly stretchable and super tough nanocomposite physical hydrogels facilitated by the coupling of intermolecular hydrogen bonds and analogous chemical crosslinking of nanoparticles. J Mater Chem B 3:1187–1192

    Article  CAS  PubMed  Google Scholar 

  40. Zhong M, Liu XY, Shi FK, Zhang LQ, Wang XP, Cheetham AG, Cui HG, Xie XM (2015) Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels. Soft Matter 11:4235–4241

    Article  CAS  PubMed  Google Scholar 

  41. Yuan F, Ma M, Lu L (2017) Preparation and properties of polyvinyl alcohol (PVA) and hydroxylapatite (HA) hydrogels for cartilage tissue engineering. Cell Mol Biol 63(5):32

    Article  CAS  PubMed  Google Scholar 

  42. Wu XY, Huang SW, Zhang JT, Zhuo RX (2004) Preparation and properties of physical cross-linked polyvinyl alcohol/hydroxyl-terminated polyamide-amine dendritic polymer hydrogels. Chem J Chin Univ 02:382–384

    Google Scholar 

  43. Wang MB, Li YB, MOU YH (2006) Study on the structure and properties of nano hydroxylapatite polyvinyl alcohol hydrogels. Funct Mater 379:1477–1480

    Google Scholar 

Download references

Funding

We acknowledge financial support from the National Nature Science Foundation of China (Nos. 21104040, 51473007) and Construction of Scientific Research Team of Beijing Technology and Business University (No. 19005902015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijuan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, C., Zhang, H. & Yang, B. A nanocomposite interpenetrating hydrogel with high toughness: effects of the posttreatment and molecular weight. Colloid Polym Sci 299, 1–10 (2021). https://doi.org/10.1007/s00396-020-04761-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04761-x

Keywords

Navigation