Skip to main content
Log in

Nonlinear viscoelastic properties of MR fluids under large-amplitude-oscillatory-shear

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Nonlinear viscoelastic properties of the MR fluid, MRF-132LD, under large-amplitude oscillatory shear were investigated. This was accomplished by carrying out the experiments under the amplitude sweep mode and the frequency sweep mode, using a rheometer with parallel-plate geometry. Investigations under the influence of various magnetic field strength and temperatures were also conducted. MR fluids behave as nonlinear viscoelastic or viscoplastic materials when they are subjected to large-amplitude shear, where the storage modulus decreases rapidly with increasing strain amplitude. Hence, MR fluid behaviour ranges from predominantly elastic at small strain amplitudes to viscous at high strain amplitudes. Large-amplitude oscillatory shear measurements with frequency sweep mode reveal that the storage modulus is independent of oscillation frequency and approaches plateau values at low frequencies. With increasing frequency, the storage modulus shows a decreasing trend before increasing again. This trend may be explained by micro-structural variation. In addition, the storage modulus increases gradually with increasing field strength but it shows a slightly decreasing trend with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  • Cutillas S, Liu J (2002) Particle dynamics of structure formation and disintegration in a model magnetorheological fluid. Int J Mod Phys B 16:2314–2320

    Article  Google Scholar 

  • Debbaut B (2001) Non-isothermal and viscoelastic effects in the squeeze flow between infinite plates. J Non-Newtonian Fluid Mech 98:15–31

    Article  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

  • Gamota DR, Filisko FE (1991a) Dynamic mechanical studies of electrorheological materials: moderate frequencies. J Rheol 35:399–425

    Article  CAS  Google Scholar 

  • Gamota DR, Filisco FE (1991b) High frequency dynamic mechanical study of an aluminosilicate electrorheological material. J Rheol 35:1411–1425

    Article  CAS  Google Scholar 

  • Gamota DR, Filisco FE (1991c) Linear/non-linear mechanical properties of electrorheological materials. In: Tao R (ed) Proc Int Conf on ERFs. World Scientific Publishing Co., New Jersey, pp. 246–263

  • Gamota DR, Wineman AS, Filisco FE (1993) Fourier transfer analysis: nonlinear dynamic response of an electrorheological material. J Rheol 37:919–933

    Article  CAS  Google Scholar 

  • Gordaninejad F, Breese DG (2000) Magneto-rheological fluid damper. US Pat 6,019,201

  • Gulley GL, Tao R (1993) Static shear stress of electrorheological fluids. Phys Rev E 48:2744–2751

    Article  CAS  Google Scholar 

  • Han SS, Choi SB (2002) Control performance of an electrorheological suspension system considering actuator time constant. Int J Vehicle Des 29:226–242

    Google Scholar 

  • Heymann L, Peukert S, Aksel N (2002) Investigation of the solid-liquid transition of highly concentrated suspensions in oscillatory amplitude sweeps. J Rheol 46:93–112

    Article  CAS  Google Scholar 

  • Kolitawong C, Giacomin AJ (2002) Dynamic response of a shear stress transducer in the sliding plate rheometer. J Non-Newtonian Fluid Mech 102:71–96

    CAS  Google Scholar 

  • Li WH, Yao GZ, Chen G, Yeo SH, Yap FF (2000) Testing and steady state modeling of a linear MR damper under sinusoidal loading. Smart Mater Struct 9:95–102

    Article  Google Scholar 

  • Liao WH, Lai CY (2002) Harmonic analysis of a magnetorheological damper for vibration. Smart Mater Struct 11:288–296

    Article  Google Scholar 

  • Otsubo Y, Sekine M, Katayama M (1992) Electrorheological properties of silica suspensions. J Rheol 36:479–496

    Article  CAS  Google Scholar 

  • Parthasarathy M, Klingenberg DJ (1999) Large amplitude oscillatory shear of ER fluids. J Non-Newtonian Fluid Mech 81:83

    Article  CAS  Google Scholar 

  • Parthasarathy M, Ahn KH, Belongia BM, Klingenberg DJ (1994) The role of suspension structure in the dynamic response of electrorheological suspensions. Int J Mod Phys B 8:2789

    CAS  Google Scholar 

  • Reimers MJ, Dealy JM (1998) Sliding plate rheometer studies of concentrated polystyrene solutions: nonlinear viscoelasticity and wall slip of two high molecular weight polymers in tricresyl phosphate. J Rheol 42:527–548

    Article  CAS  Google Scholar 

  • Snyder RA, Kamath GM, Wereley NW (2001) Characterization and analysis of magnetorheological damper under sinusoidal loading. AIAA J 39:1240–1253

    Google Scholar 

  • Tang X, Zhang X, Tao R, Rong YM (2000) Structure-enhanced yield stress of magnetorheological fluid. J Appl Phys 87:2634–2638

    CAS  Google Scholar 

  • Tang X, Zhang X, Tao R (2001) Enhance the yield shear stress of magnetorheological fluids. Int J Mod Phys B 15:549–556

    Google Scholar 

  • Tao R, Jiang Q (1994) Simulation of structure formation in an electrorheological fluid. Phys Rev Lett 73:205–208

    Article  CAS  PubMed  Google Scholar 

  • Weiss KD, Carlson JD, Nixon DA (1994) Viscoelastic properties of magneto- and electro-rheological fluids. J Intell Mater Syst Struct 5:772

    Google Scholar 

  • Yamamoto H, Nakano M (2002) Rheological properties and dynamic mechanical model of a magnetorheological suspension in pressure flow mode. J Soc Rheol Jpn 30:83–88

    Google Scholar 

  • Yosick JA, Giacomin JA, Stewart WE, Ding F (1998) Fluid inertia in large amplitude oscillatory shear. Rheol Acta 37:365–373

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. F. Gordanenjad and Prof. Hideya Nishyama for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua H. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W.H., Du, H., Chen, G. et al. Nonlinear viscoelastic properties of MR fluids under large-amplitude-oscillatory-shear. Rheol Acta 42, 280–286 (2003). https://doi.org/10.1007/s00397-002-0285-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-002-0285-4

Keywords

Navigation