Skip to main content
Log in

Stick-slip flow of high density polyethylene in a transparent slit die investigated by laser Doppler velocimetry

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The oscillating flow instability of a molten linear high-density polyethylene is carefully studied using a single screw extruder equipped with a transparent slit die. Experiments are performed using laser Doppler velocimetry in order to obtain the local velocities field across the entire die width. At low flow rate, the extrusion is stable and steady state velocity profiles are obtained. During the instability, the velocity oscillates between two steady state limits, suggesting a periodic stick-slip transition mechanism. At high flow rate, the flow is mainly characterized by a pronounced wall slip. We show that wall slip occurs all along the die land. An investigation of the slip flow conditions shows that wall slip is not homogeneous in a cross section of the slit die, and that pure plug flow occurs only for very high flow rates. A numerical computation of the profile assuming wall slip boundary conditions is done to obtain the true local wall slip velocity. It confirms that slip velocities are of the same order of magnitude as those measured with a capillary rheometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7a,b.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12a,b.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

References

  • Atwood BT, Schowalter WR (1989) Measurements of slip at the wall during flow of high-density polyethylene. Rheol Acta 28:134–146

    CAS  Google Scholar 

  • Blyler LL, Hart AC (1970) Capillary flow instability of ethylene polymer melts. Polym Eng Sci 10:193–203

    CAS  Google Scholar 

  • Brochard F, de Gennes PG (1992) Shear-dependent slippage at a polymer/solid interface. Langmuir 8:3033–3037

    CAS  Google Scholar 

  • Chen Y, Kalyon DM, Bayramli E (1993) Effects of surface roughness and the chemical structure of materials of construction on wall slip behavior of linear low density polyethylene in capillary flow. J Appl Polym Sci 50:1169–1177

    Article  CAS  Google Scholar 

  • den Doelder CFJ, Koopmans RJ, Molenaar J (1998) Quantitative modelling of HDPE spurt experiments using wall slip and generalized Newtonian flow. J Non-Newtonian Fluid Mech 79:503–514

    Google Scholar 

  • Denn MM (1990) Issues in viscoelastic fluid mechanics. Ann Rev Fluid Mech 22:13–34

    Article  Google Scholar 

  • Denn MM (2001) Extrusion instabilities and wall slip. Ann Rev Fluid Mech 33:265–287

    Article  Google Scholar 

  • Durand V, Vergnes B, Agassant JF, Benoit E, Koopmans RJ (1996) Experimental study and modelling of oscillating flow of high density polyethylenes. J Rheol 40:383–394

    Article  CAS  Google Scholar 

  • Durst F, Melling A, Whitelaw JH (1981) Principles and practice of laser-Doppler anemometry. Academic Press, New York

  • Ghanta VG, Riise BL, Denn MM (1999) Disappearance of extrusion instabilities in brass capillary dies. J Rheol 43:435–442

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1992a) Wall slip of molten high density polyethylenes. II. Capillary rheometer studies. J Rheol 36:703–741

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1992b) Role of slip and fracture in the oscillating flow of HDPE in a capillary. J Rheol 36:845–884

    Article  CAS  Google Scholar 

  • Joshi YM, Lele AK, Mashelkar RA (2000a) Slipping fluids: a unified transient network model. J Non-Newtonian Fluid Mech 89:303–335

    Google Scholar 

  • Joshi YM, Lele AK, Mashelkar RA (2000b) A unified wall slip model. J Non-Newtonian Fluid Mech 94:135–149

    Google Scholar 

  • Kalika DS, Denn MM (1987) Wall slip and extrudate distorsion in linear low-density polyethylene. J Rheol 31:815–834

    Article  CAS  Google Scholar 

  • Kay D, Carreau PJ, Lafleur PG, Robert L, Vergnes B (2003) A study of the stick-slip phenomenon in single screw extrusion of linear polyethylene. Polym Eng Sci 43(1):78–90

    CAS  Google Scholar 

  • Larson RG (1992) Instabilities in viscoelastic flow. Rheol Acta 31:213–263

    CAS  Google Scholar 

  • Lawler JV, Muller SJ, Brown RA, Armstrong RC (1985) Laser Doppler velocimetry measurements of velocity fields and transitions in viscoelastic fluids. J Non-Newtonian Fluid Mech 20:51–92

    Google Scholar 

  • Lupton JM, Regester JW (1965) Melt flow of polyethylene at high rates. Polym Eng Sci 5:235–245

    CAS  Google Scholar 

  • Mackley MR, Moore IPT (1986) Experimental velocity distribution measurements of high density polyethylene flowing into and within a slit. J Non-Newtonian Fluid Mech 21:337–358

    Google Scholar 

  • Mhetar V, Archer LA (1998a) Slip in entangled polymer solutions. Macromolecules 31:6639–6649

    Article  CAS  Google Scholar 

  • Mhetar V, Archer LA (1998b) Slip in entangled polymer melts. 1. General features. Macromolecules 31:8607–8616

    CAS  Google Scholar 

  • Münstedt H, Schmidt M, Wassner E (2000) Stick and slip phenomena during extrusion of polyethylene melts as investigated by laser-Doppler velocimetry. J Rheol 44:413–427

    Article  Google Scholar 

  • Petrie CJS, Denn MM (1976) Instabilities in polymer processing. AIChE J 22:209–236

    CAS  Google Scholar 

  • Piau JM, El Kissi N (1994) Measurement and modelling of friction in polymer melts during macroscopic slip at the wall. J Non-Newtonian Fluid Mech 54:121–142

    Google Scholar 

  • Piau JM, El Kissi N, Mezghani A (1995a) Slip flow of polybutadiene through fluorinated dies. J Non-Newtonian Fluid Mech 59:11–30

    Google Scholar 

  • Piau JM, El Kissi N, Toussaint F, Mezghani A (1995b) Distortions of polymer melt extrudates and their elimination using slippery surfaces. Rheol Acta 34:40–57

    CAS  Google Scholar 

  • Robert L (2001) Instabilité oscillante de polyéthylènes linéaires: observations et interprétations. PhD Thesis, Université de Nice Sophia-Antipolis, France

  • Rudin A, Schreiber HP, Duchesne D (1990) Use of fluorocarbon elastomers as processing additives for polyolefins. Polym Plast Technol Eng 29:199–234

    CAS  Google Scholar 

  • Schmidt M, Wassner E, Münstedt H (1999) Setup and test of a laser-Doppler velocimeter for investigations of flow behaviour of polymer melts. Mech Time-Dependent Mater 3:371–393

    Google Scholar 

  • Tordella JP (1969) Unstable flow of molten polymers. In: Eirich FR (ed) Rheology, vol V. Academic Press, New York, pp 57–92

  • Uhland E (1979) Das anormale Fliessverhalten von Polyäthylen hoher Dichte. Rheol Acta 18:1–24

    CAS  Google Scholar 

  • Ui J, Ishimaru Y, Murakami H, Fukushima N, Mori Y (1964) Study of flow properties of polymer melt with the screw extruder. SPE Trans 10:295–305

    Google Scholar 

  • Wang, SQ (1999) Molecular transitions and dynamics at polymer/wall interfaces: origins of flow instabilities and wall slip. Adv Polym Sci 138:227–275

    CAS  Google Scholar 

  • Wang SQ, Drda PP (1996) Superfluid-like stick-slip transition in capillary flow of linear polyethylene melts. 1. General features. Macromolecules 29:2627–2632

    Article  CAS  Google Scholar 

  • Wang SQ, Drda PP (1997a) Superfluid-like stick-slip transition in capillary flow of linear polyethylene melts. 1. Surface conditions. Macromolecules 36:128–134

    Article  CAS  Google Scholar 

  • Wang SQ, Drda PP (1997b) Molecular instabilities in capillary flow of polymer melts: Interfacial stick-slip transition, wall slip and extrudate distortion. Macromol Chem Phys 198:673–701

    Article  CAS  Google Scholar 

  • Wassner E, Schmidt M, Münstedt H (1999) Entry flow of a PE-LD melt into a slit die: an experimental study by laser-Doppler-velocimetry. J Rheol 43:1339–1353

    Article  CAS  Google Scholar 

  • Wise GM, Denn MM, Bell AT, Mays JW, Hong K, Latrou H (2000) Surface mobility and slip of polybutadiene melts in shear flow. J Rheol 44:549–567

    Article  CAS  Google Scholar 

  • Yarin AL, Graham MD (1998) A model for slip at polymer/solid interfaces. J Rheol 42:1491–1504

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge J.M. Andrë (Atofina) for providing the resin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vergnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, L., Demay, Y. & Vergnes, B. Stick-slip flow of high density polyethylene in a transparent slit die investigated by laser Doppler velocimetry. Rheol Acta 43, 89–98 (2004). https://doi.org/10.1007/s00397-003-0323-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-003-0323-x

Keywords

Navigation