Skip to main content
Log in

Nonlinear fluid dynamics description of non-Newtonian fluids

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Nonlinear hydrodynamic equations for visco-elastic media are discussed. We start from the recently derived fully hydrodynamic nonlinear description of permanent elasticity that utilizes the (Eulerian) strain tensor. The reversible quadratic nonlinearities in the strain tensor dynamics are of the “lower convected” type, unambiguously. Replacing the (often neglected) strain diffusion by a relaxation of the strain as a minimal ingredient, a generalized hydrodynamic description of viscoelasticity is obtained. This can be used to get a nonlinear dynamic equation for the stress tensor (sometimes called constitutive equation) in terms of a power series in the variables. The form of this equation and in particular the form of the nonlinear convective term is not universal but depends on various material parameters. A comparison with existing phenomenological models is given. In particular we discuss how these ad-hoc models fit into the hydrodynamic description and where the various non-Newtonian contributions are coming from.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beris AN, Edwards BJ (1994) Thermodynamics of flowing systems with internal microstructure. University Press, Oxford

  • Bird RB, Armstrong RC, Hassager O (1977) Dynamics of polymeric liquids, vol.1. Wiley, New York

  • Boehme G (2000) Stroemungsmechanik nichtnewtonscher Fluide, 2nd edn. Teubner, Stuttgart

  • Bogoljubov NN (1962) Phys Abhandl SU 6:229

    Google Scholar 

  • Callen HB (1985) Thermodynamics, 2nd edn. Wiley, New York

  • Coleman BD, Noll W (1961) Rev Mod Phys 33:239

    Article  Google Scholar 

  • deGroot SR, Mazur P (1984) Nonequilibrium thermodynamics, 2nd edn. Dover, New York

  • Ericksen JL (1960) Arch Rat Mech Anal 4:231; (1962) 9:371

    Google Scholar 

  • Forster D (1975) Hydrodynamic fluctuations, broken symmetry and correlation functions. Benjamin, Reading, Mass

  • Giesekus H (1966) Rheol Acta 5:29; (1982) J Non-Newtonian Fluid Mech 11:69

  • Graham RS, Likhtman AE, McLeish TCB, Milner ST (2003) J Rheol 47:1171

    Article  CAS  Google Scholar 

  • Grmela M (1984) Phys Lett A 102:355; (1985) 111:36, 41

  • Grmela M (2002) Phys Lett A 296:97

    Article  CAS  Google Scholar 

  • Hess S (1975) Z Naturforsch 30a:728, 1224

    Google Scholar 

  • Hohenberg P, Martin PC (1965) Ann Phys 34:291

    CAS  Google Scholar 

  • Ianniruberto G, Marrucci G (2001) Rheol J 45:1305; Marrucci G, Ianniruberto G (2002) Macromol Symp 185:199

    Article  Google Scholar 

  • Johnson MW, Segalman D (1977) J Non-Newtonian Fluid Mech 2:255, (1978) J Rheol 22:445

    Google Scholar 

  • Kadanoff LP, Martin PC (1963) Ann Phys 24:419

    Google Scholar 

  • Khalatnikov IM (1965) Introduction to the theory of superfluidity. Benjamin, New York

  • Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworths, Boston

  • Lee JD, Eringen AC (1971) J Chem Phys 54:5027

    Article  CAS  Google Scholar 

  • Leslie FM (1968) Arch Rat Mech Anal 28:265

    Google Scholar 

  • Martin PC, Parodi O, Pershan PS (1972) Phys Rev A 6:2401

    Article  CAS  Google Scholar 

  • Oldroyd JG (1950) Proc R Soc A200:523

    CAS  Google Scholar 

  • Phan-Thien N (1978) J Rheol 22:259

    Article  CAS  Google Scholar 

  • Phan-Thien N, Tanner RI (1977) J Non-Newtonian Fluid Mech 2:353

    Google Scholar 

  • Pleiner H, Brand HR (1996) Hydrodynamics and electrohydrodynamics of nematic liquid crystals. In: Buka A, Kramer L (eds) Pattern formation in liquid crystals. Springer, Berlin Heidelberg New York, p 15

  • Pleiner H, Liu M, Brand HR (2000) Rheol Acta 39:560

    Article  CAS  Google Scholar 

  • Pleiner H, Liu M, Brand HR (2002) Rheol Acta 41:375

    Article  CAS  Google Scholar 

  • Reichl LE (1980) A modern course in statistical physics. Texas University Press, Austin

  • Temmen H, Pleiner H, Liu M, Brand HR (2000) Phys Rev Lett 84:3228; (2001) 86:745

    Google Scholar 

  • Truesdell C, Noll W (1965) The non-linear field theories of mechanics. Springer, Berlin Heidelberg New York

  • Wagner MH, Rubio P, Bastian H (2001) J Rheol 45:1387

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported in part by the National Science Foundation under Grant No. PHY99-07949.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Pleiner.

Appendices

Appendix A. Generalization of the phenomenological equations

In Eqs. (4) and (5) we have omitted possible reversible crosscouplings between flow and strain dynamics

$$ X^{{{\left( {ph} \right)}}}_{{ij}} = - \alpha _{{ijkl}} \Psi _{{kl}} - \beta _{{ijkl}} A_{{kl}} $$
(A1)
$$ \sigma ^{{{\left( {ph} \right)}}}_{{ij}} = - \nu _{{ijkl}} A_{{kl}} + \beta _{{klij}} \Psi _{{kl}} $$
(A2)

characterized by the tensor β ijkl , which is of a slightly more complicated form than α ijkl in Eq. (6). Being reversible it is not derived from a potential and lacks the ijkl symmetry. This results in two different components β4a δ ij U kl 4b δ kl U ij , where, however, the latter (as well as β3,5) vanish due to incompressibility. Thus we are left with four parameters β1,2,4a,6. Such terms, coming with probably small reactive transport parameters, have to compete with the parameter free, symmetry required terms already being part of Eqs. (1) and (2). These reversible crosscouplings are possible in the viscoelastic case only, and are absent for permanent elasticity. In the latter case only diffusion \( X^{{{\left( {ph} \right)}}}_{{ij}} \)=D k (∇ i Ψ jk +∇ j Ψ ik ) is present.

We also list here the five third-order static elastic contributions that follow from an elastic energy quartic in the strain tensor

$$ \begin{array}{*{20}l} {{K^{{{\left( 3 \right)}}}_{{ijkl}} } \hfill} & { = \hfill} & {{K_{6} \delta _{{ij}} \delta _{{kl}} U_{{pp}} U_{{qq}} + K_{7} {\left( {{\left[ {\delta _{{ik}} \delta _{{jl}} + \delta _{{il}} \delta _{{jk}} } \right]}U_{{pp}} U_{{qq}} + \delta _{{ij}} \delta _{{kl}} U_{{pq}} U_{{pg}} } \right)}} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ + K_{s} {\left( {\delta _{{ij}} U_{{kp}} U_{{lp}} + \delta _{{kl}} U_{{ip}} U_{{jp}} + \frac{1} {4}{\left[ {\delta _{{ik}} U_{{jl}} + \delta _{{jk}} U_{{il}} + \delta _{{il}} U_{{jk}} + \delta _{{jl}} U_{{ik}} } \right]}U_{{pp}} } \right)}} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ + K_{9} {\left( {\delta _{{ik}} \delta _{{jl}} + \delta _{{il}} \delta _{{jk}} } \right)}U_{{pq}} U_{{pq}} + K_{{10}} {\left( {\delta _{{ik}} U_{{jp}} U_{{lp}} + \delta _{{jk}} U_{{ip}} U_{{lp}} + \delta _{{il}} U_{{jp}} U_{{kp}} + \delta _{{jl}} U_{{ip}} U_{{kp}} } \right)}} \hfill} \\ \end{array} $$
(A3)

and that are a generalization of the first and second-order terms kept above in the main text. A necessary stability condition involving the second-order modulus K 2 requires 27K 1(K 9+K 10)>\( 2K^{2}_{2} \).

Appendix B. Influence of the tensor traces

Here we discuss the influence of those phenomenological parameters in Eqs. (6) and (7) that are connected with the traces of the tensors involved, α3,4,5,6, ν6, and K 3,4,5, as well as β1,2,4a,6 Eqs. (A1) and (A2) neglected in the main text. The phenomenological parts of the dynamic and static equations then read

$$ \begin{array}{*{20}l} {{X^{{{\left( {ph} \right)}}}_{{ij}} } \hfill} & { = \hfill} & {{ - \alpha _{1} \Psi _{{ij}} - \alpha _{2} {\left( {U_{{ik}} \Psi _{{jk}} + U_{{jk}} \Psi _{{ik}} } \right)} - \alpha _{3} \delta _{{ij}} \Psi _{{kk}} - \alpha _{4} {\left( {\delta _{{ij}} U_{{kl}} \Psi _{{kl}} + U_{{ij}} \Psi _{{kk}} } \right)} - \alpha _{5} \delta _{{ij}} U_{{kk}} \Psi _{u} } \hfill} \\ {{} \hfill} & {{} \hfill} & {{ - 2\alpha _{6} U_{{kk}} \Psi _{{ij}} - \beta _{1} A_{{ij}} - \beta _{2} {\left( {U_{{ik}} A_{{jk}} + U_{{jk}} A_{{ik}} } \right)} - \beta _{{4a}} \delta _{{ij}} U_{{kl}} A_{{kl}} - 2\beta _{6} U_{{kk}} A_{{ij}} } \hfill} \\ \end{array} $$
(B1)
$$ \begin{array}{*{20}l} {{\sigma ^{{{\left( {ph} \right)}}}_{{ij}} } \hfill} & { = \hfill} & {{ - \nu _{1} A_{{ij}} - \nu _{2} {\left( {U_{{ik}} A_{{jk}} + U_{{jk}} A_{{ik}} } \right)} - 2\nu _{6} A_{{ij}} U_{{kk}} + \beta _{1} \Psi _{{ij}} + \beta _{2} {\left( {\Psi _{{ik}} U_{{jk}} + \Psi _{{jk}} U_{{ik}} } \right)}} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ + \beta _{{4a}} \Psi _{{kk}} U_{{ij}} + 2\beta _{6} \Psi _{{ij}} U_{{ll}} } \hfill} \\ \end{array} $$
(B2)
$$ \Psi _{{ij}} = K_{1} U_{{ij}} + 2K_{2} U_{{ik}} U_{{jk}} + K_{3} \delta _{{ij}} U_{{kk}} + K_{4} {\left( {\delta _{{ij}} U_{{kl}} U_{{kl}} + 2U_{{ij}} U_{{kk}} } \right)} + K_{5} \delta _{{ij}} U_{{kk}} U_{{ll}} $$
(B3)

The strain relaxation and the stress take the form

$$ \begin{array}{*{20}l} {{\frac{{D_{{ - 1}} }} {{Dt}}U_{{ij}} - A_{{ij}} } \hfill} & { = \hfill} & {{ - \tau ^{{ - 1}}_{1} U_{{ij}} - \tau ^{{ - 1}}_{2} U_{{ik}} U_{{jk}} - \tau ^{{ - 1}}_{3} \delta _{{ij}} U_{{kk}} - \tau ^{{ - 1}}_{4} \delta _{{ij}} U_{{kl}} U_{{kl}} - \tau ^{{ - 1}}_{5} \delta _{{ij}} U_{{kk}} U_{{ll}} } \hfill} \\ {{} \hfill} & {{} \hfill} & {{ - \tau ^{{ - 1}}_{6} U_{{ij}} U_{{kk}} - \beta _{1} A_{{ij}} - \beta _{2} {\left( {U_{{ik}} A_{{jk}} + U_{{jk}} A_{{ik}} } \right)} - \beta _{{4a}} \delta _{{ij}} U_{{kl}} A_{{kl}} - 2\beta _{6} U_{{kk}} A_{{ij}} } \hfill} \\ \end{array} $$
(B4)
$$ \begin{array}{*{20}l} {{\sigma _{{ij}} } \hfill} & { = \hfill} & {{ - \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{1} U_{{ij}} + \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}^{'}_{2} U_{{ik}} U_{{jk}} - \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}^{'}_{3} \delta _{{ij}} U_{{kk}} + \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}^{'}_{3} U_{{ij}} U_{{kk}} - \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}^{'}_{4} \delta _{{ij}} U_{{kl}} U_{{kl}} } \hfill} \\ {{} \hfill} & {{} \hfill} & {{ - \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}^{'}_{5} \delta _{{ij}} U_{{kk}} U_{{ll}} - \nu _{1} A_{{ij}} - \nu _{2} {\left( {U_{{ik}} A_{{jk}} + U_{{jk}} A_{{ik}} } \right)} - 2\nu _{6} A_{{ij}} U_{{kk}} } \hfill} \\ \end{array} $$
(B5)

with the new parameters \( \tau ^{{ - 1}}_{3} = \alpha _{1} K_{3} + \alpha _{3} K_{1} + 3\alpha _{3} K_{3} \), \( \tau ^{{ - 1}}_{4} = \alpha _{1} K_{4} + 2\alpha _{3} K_{2} + 3\alpha _{3} K_{4} + \alpha _{4} K_{1} \), \( \tau ^{{ - 1}}_{5} = 2\alpha _{3} K_{4} + \alpha _{4} K_{3} + \alpha _{5} K_{1} + \alpha _{1} K_{5} + 3\alpha _{3} K_{5} + 3\alpha _{5} K_{3} + 2\alpha _{6} K_{3} \), \( \tau ^{{ - 1}}_{6} \)=2α2 K 34 K 1+2α1 K 4+3α4 K 3+2α6 K 1, \( \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{1} \)=K 1(1−β1), \( \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{3} \)=K 3(1−β1), \( \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{4} \)=K 4(1–β1), \( \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}^{'}_{2} = K^{'}_{2} \)+2β2 K 1+2β1 K 2, \( \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}^{'}_{3} = 2 \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{3} \) (1+β2+(3/2)β4a )−2\( \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{4} \)+K 14a +2β6), and \( \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}^{'}_{5} \)=K 5(1−β1)−2K 3β6.

The procedure to switch from the strain relaxation equation to an effective dynamic equation for the stress tensor is the same as described above in the main text. Due to the many new terms, it is more involved, and it is complicated additionally by the fact that the traces and the traceless parts of σ ij and U ij are related by different parameters (even in the linear case) as can be seen from the modified Eq. (12):

$$ \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{1} U^{{(lin)}}_{{ij}} = - \sigma _{{ij}} - \nu _{1} A_{{ij}} + \frac{{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{3} }} {{3 \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{3} + \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{1} }}\delta _{{ij}} \sigma _{{kk}} $$
(B6)

We refrain from writing down more details, but discuss the structure of the final result

$$ \begin{array}{*{20}l} {{\tau _{1} \frac{{D_{{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{a}}} }} {{Dt}}} \hfill} & { + \hfill} & {{\sigma _{{ij}} + B_{1} \delta _{{ij}} \sigma _{{kk}} = - \ifmmode\expandafter\tilde\else\expandafter\~\fi{\nu }_{\infty } A_{{ij}} - \nu _{1} \tau _{1} \frac{{D_{{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{b}}} }} {{Dt}}A_{{ij}} + \frac{{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{r}}} {{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{1} }}\sigma _{{ik}} \sigma _{{jk}} + B_{2} \sigma _{{kk}} \frac{\partial } {{\partial t}}A_{{ij}} } \hfill} \\ {{} \hfill} & { + \hfill} & {{\frac{{\tau _{1} \nu _{2} }} {{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{1} }}{\left( {{\left[ {\sigma _{{jk}} + B_{3} \delta _{{jk}} \sigma _{{pp}} + \nu _{1} A_{{jk}} } \right]}\frac{\partial } {{\partial t}}A_{{ik}} + {\left[ {\sigma _{{ik}} + B_{3} \delta _{{ik}} \sigma _{{qq}} + \nu _{1} A_{{ik}} } \right]}\frac{\partial } {{\partial t}}A_{{jk}} } \right)}} \hfill} \\ {{} \hfill} & { + \hfill} & {{\sigma _{{kk}} {\left( {B_{4} \sigma _{{ij}} + B_{5} A_{{ij}} } \right)} + \delta _{{ij}} {\left( {B_{6} \sigma _{{kl}} + B_{7} \sigma _{{kl}} A_{{kl}} + B_{8} A_{{kl}} A_{{kl}} + B_{9} \sigma _{{kk}} \sigma _{u} } \right)} + O{\left( 3 \right)}} \hfill} \\ \end{array} $$
(B7)

with \( \ifmmode\expandafter\tilde\else\expandafter\~\fi{\nu }_{\infty } \)1+K 1τ1(1−β1)2 and the tilded numbers ã, \( \ifmmode\expandafter\tilde\else\expandafter\~\fi{b} \), and \( \ifmmode\expandafter\tilde\else\expandafter\~\fi{r} \) being much more complicated than the untilded ones (Eqs. 16 and 17). There are structurally new terms related to σ kk , a linear one (with B 1=\( \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{3} \)/(3\( \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{3} \)+\( \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{1} \))+τ13), and eight quadratic ones characterized by coefficients B 2,...,9 . Nevertheless, the trace of the stress tensor and its time derivative are of second-order and do not influence the dynamics of the traceless part in O(2). Thus, for the deviator, \( \sigma ^{0}_{{ij}} \) ij −(1/3)δ ij σ kk , the dynamic equation has exactly the form of Eq. (14), but with the tilded numbers and parameters instead of the untilded ones. For the trace we find to second-order

$$ \begin{array}{*{20}l} {{\tau _{1} \frac{d} {{dt}}\sigma _{{kk}} + {\left( {1 + 3B_{1} } \right)}\sigma _{{kk}} } \hfill} & { = \hfill} & {{2 \ifmmode\expandafter\tilde\else\expandafter\~\fi{b}\nu _{1} \tau _{1} A_{{kl}} A_{{kl}} + \frac{{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{r}}} {{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{1} }}\sigma ^{0}_{{kl}} \sigma ^{0}_{{kl}} + \frac{{2\tau _{1} \nu _{2} }} {{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{K}_{1} }}{\left( {\sigma ^{0}_{{kl}} + \nu _{1} A_{{kl}} } \right)}\frac{\partial } {{\partial t}}A_{{kl}} } \hfill} \\ {{} \hfill} & { + \hfill} & {{3{\left( {B_{6} \sigma ^{0}_{{kl}} \sigma ^{0}_{{kl}} + {\left[ {B_{7} + \frac{2} {3}\tau _{1} \ifmmode\expandafter\tilde\else\expandafter\~\fi{a}} \right]}\sigma ^{0}_{{kl}} A_{{kl}} + B_{8} A_{{kl}} A_{{kl}} } \right)} + O{\left( 3 \right)}} \hfill} \\ \end{array} $$
(B8)

indicating that its relaxational dynamics is completely given by the flow A ij and the traceless part \( \sigma ^{0}_{{ij}} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pleiner, H., Liu, M. & Brand, H.R. Nonlinear fluid dynamics description of non-Newtonian fluids. Rheol Acta 43, 502–508 (2004). https://doi.org/10.1007/s00397-004-0365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-004-0365-8

Keywords

Navigation