Skip to main content
Log in

Modeling of diffusion through polymeric membranes

  • original paper
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Diffusion, coupled with rheology, of a simple fluid through a complex polymeric membrane is modeled using the Poisson and dissipation bracket formalism. A set of governing equations describing the time evolution of concentration, flux, and internal structure of the complex polymeric membrane is obtained. Two parameters, which characterize the importance of elasticity and mixing properties, appear in the governing equations. An extension of Fick’s second law is derived for the flux evolution. The model describes the diffusion process quantitatively quite well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alfrey T, Gurnee EF, Lloyd WG (1966) Diffusion in glassy polymers. J Polym Sci Part C Polym Symp 12:249–261

    Google Scholar 

  • Beris AN, Edwards BJ (1990) Poisson bracket formulation of incompressible flow equations in continuum mechanics. J Rheol 34:55–78

    Article  Google Scholar 

  • Beris AN, Edwards BJ (1994) Thermodynamics of flowing system with internal microstructure. Oxford University Press, New York

  • Crank J, Park GS (1968) Diffusion in polymers. Academic Press, New York

  • Curtiss CF, Bird RB (1996) Multicomponent diffusion in polymeric liquids. Proc Natl Acad Sci USA 93:7440–7445

    Article  CAS  PubMed  Google Scholar 

  • De Kee D, Fong Chan Man CF, Pintauro P, Hinestroza J, Yuan G, Burczyk A (2000) Effect of temperature and elongation on the liquid diffusion and permeation characteristics of natural rubber, nitrile rubber, and bromobutyl rubber. J Appl Polym Sci 78:1250–1255

    Article  Google Scholar 

  • Durning CJ, Tabor M (1986) Mutual diffusion in concentrated polymer solutions under a small driving force. Macromolecules 19:2220–2232

    CAS  Google Scholar 

  • Durning CJ, Edwards DA, Cohen DS (1996) Perturbation analysis of Thomas and Windle’s model of Case II transport. AIChE J 42:2025–2035

    Article  CAS  Google Scholar 

  • El Afif A, Grmela M (2002a) Non-Fickian mass transport in polymers. J Rheol 46:591–628

    Article  Google Scholar 

  • El Afif A, Grmela M (2002b) Diffusion of one- and two-component fluids into polymeric membranes. Can J Chem Eng 80:1197–1205

    Google Scholar 

  • El Afif A, Grmela M, Lebon G (1999) Rheology and diffusion in simple and complex fluids. J Non-Newtonian Fluid Mech 86:253–275

    Google Scholar 

  • El Afif A, Grmela M, Lebon G (2000) Thermodynamics modeling of the penetration of a solvent into polymeric fluids. Thirteenth International Congress on Rheology, Cambridge, United Kingdom

  • Erman B, Mark JE (1997) Structures and properties of rubberlike networks. Oxford University Press, New York Oxford

  • Fu TZ, Durning CJ, Tong HM (1991) Simple mode for swelling-induced stresses in a supported polymer thin film. J Appl Polym Sci 43:709–721

    Article  CAS  Google Scholar 

  • Grmela M (1988) Hamiltonian dynamics of incompressible elastic fluids. Phys Lett A 130:81–86

    Article  Google Scholar 

  • Grmela M, Ottinger HC (1997) Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys Rev E 56:6620–6632

    Article  CAS  Google Scholar 

  • Grmela M, Elafif A, Lebon G (1998) Isothermal nonstandard diffusion in a two-component fluid mixture. A Hamiltonian approach. J Non-Equilibrium Thermodynamics 23:376–390

    Google Scholar 

  • Hinestroza JP (2002) Tulane University

  • Hinestroza J, De Kee D, Pintauro PN (2001) Apparatus for studying the effect of mechanical deformation on the permeation of organics through polymeric films. Ind Eng Chem Res 40:2183–2187

    Article  CAS  Google Scholar 

  • Kirkwood JG (1967) In: Auer PL (ed) Documents in modern physics. Gordon and Breach, New York

  • Neogi P (1983) Anomalous diffusion of vapours through solid polymers. AIChE J 29:829–839

    Article  CAS  Google Scholar 

  • Ottinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys Rev E 56:6633–6655

    Article  CAS  Google Scholar 

  • Stastna J, De Kee D (1995) Transport properties in polymers. Technomic Publishing, Lancaster

  • Thomas N, Windle AH (1978) Transport of methanol in poly(methyl methacrylate). Polymer 19:255–265

    Article  CAS  Google Scholar 

  • Treloar LRG (1975) The physics of rubberlike elasticity. Clarendon Press, Oxford

  • Vrentas JS, Duda JL (1979) Molecular diffusion in polymer solutions. AIChE J 25:1–24

    Article  CAS  Google Scholar 

  • Wu JC, Peppas NA (1993) Numerical simulation of anomalous penetrant diffusion in polymers. J Appl Polym Sci 49:1845–1856

    Article  CAS  Google Scholar 

  • Xiao S, Moresoli C, Bovenkamp J, De Kee D (1997a) Sorption and permeation of organic contaminants through high-density polyethylene geomembranes. J Appl Polym Sci 65:1833–1836

    Article  CAS  Google Scholar 

  • Xiao S, Moresoli C, Bovenkamp J, De Kee D (1997b) Sorption and permeation of organic environmental contaminants through PVC geomembranes. J Appl Polym Sci 63:1189–1197

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge helpful discussions with Dr. El Afif. Support through NASA grants NAG-1-02070 and NCC3-946 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. De Kee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., De Kee, D. Modeling of diffusion through polymeric membranes. Rheol Acta 44, 287–294 (2005). https://doi.org/10.1007/s00397-004-0410-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-004-0410-7

Keywords

Navigation