Skip to main content

Advertisement

Log in

Flow of soft solids squeezed between planar and spherical surfaces

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The force to squeeze a Herschel–Bulkley material without slip between two approaching surfaces of various curvature is calculated. The Herschel–Bulkley yield stress requires an infinite force to make plane–plane and plane–concave surfaces touch. However, for plane–convex surfaces this force is finite, which suggests experiments to access the mesoscopic thickness region (1–100 μm) of non-Newtonian materials using squeeze flow between a plate and a convex lens. Compared to the plane–parallel surfaces that are used most often for squeeze flow, the dependence of the separation h′ and approach speed V on the squeezing-time is more complicated. However, when the surfaces become close, a simplification occurs and the near-contact approach speed is found to vary as Vh0 if the Herschel–Bulkley index is n<1/3, and Vh(3n-1)/(2n) if n≥ 1/3. Using both plane–plane and plane–convex surfaces, concordant measurements are made of the Herschel–Bulkley index n and yield stress τ0 for two soft solids. Good agreement is also found between τ0 measured by the vane and by each squeeze-flow method. However, one of the materials shows a limiting separation and a V(h′) behaviour not predicted by theory for h′<10 μm, possibly owing to an interparticle structure of similar lengthscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams MJ, Edmondson B, Caughey DG, Yahya R (1994) An experimental and theoretical study of the squeeze-film deformation and flow of elastoplastic fluids. J Non-Newton Fluid Mech 51:61–78

    Article  Google Scholar 

  • Braithwaite GJC, McKinley GH (1999) Microrheometry for studying the rheology and dynamics of polymers near interfaces. Appl Rheol 9:27–33

    Google Scholar 

  • Clasen C, McKinley GH (2004) Gap-dependent microrheometry of complex liquids. J Non-Newton Fluid Mech 124:1–10

    Article  Google Scholar 

  • Covey GH, Stanmore BR (1981) Use of the parallel-plate plastometer for the characterization of viscous fluids with a yield stress. J Non-Newtonian Fluid Mech 8:249–260

    Article  Google Scholar 

  • Cua EC, Shaw MT (2002) Using creeping squeeze flow to obtain low-frequency linear viscoelastic properties: low-shear rate measurements on polydimethylsiloxane. J Rheol 46:817–830

    Article  Google Scholar 

  • Cua EC, Shaw MT (2004) Creeping sphere-plane squeeze flow to determine the zero-shear-rate viscosity of HDPE melts. Appl Rheol 14:33–39

    Google Scholar 

  • Dhinojwala A, Granick S (1996) New approaches to measure interfacial rheology of confined fluids. J Chem Soc Faraday Trans 92:619–623

    Article  Google Scholar 

  • Dong Chen X (1993) Slip and no-slip squeezing flow of liquid food in a wedge. Rheol Acta 32:477–482

    Article  Google Scholar 

  • Feibelman PJ (2004) Effect of high-viscosity interphases on drainage between hydrophilic surfaces. Langmuir 20:1239–1244

    Article  Google Scholar 

  • Flanigan CM, Shull KR (1999) Adhesive and elastic properties of thin gel layers. Langmuir 15:4966–4974

    Article  Google Scholar 

  • Hasegawa E (1985) On squeeze film of a curved circular plate. Bull JSME 28:951–958

    Article  Google Scholar 

  • Henson DJ, Mackay ME (1995) Effect of gap on the viscosity of monodisperse polystyrene melts: slip effects. J Rheol 39:359–373

    Article  Google Scholar 

  • Hoffner B, Campanella OH, Corradini MG, Peleg M (2001) Squeezing flow of a highly viscous incompressible fluid pressed between slightly inclined lubricated wide plates. Rheol Acta 40:289–295

    Article  Google Scholar 

  • Huang W, Xu Y, Lian G, Li H (2002) Squeeze flow of a power-law fluid between two rigid spheres with wall slip (English edn). Appl Math Mech 23:811–818

    Article  Google Scholar 

  • Jiang P, See H, Swain MV, Phan-Thien N (2003) Using oscillatory squeeze flow to measure the viscoelastic properties of dental composite resin cements during curing. Rheol Acta 42:118–122

    Article  Google Scholar 

  • Lian G, Xu Y, Huang W, Adams MJ (2001) On the squeeze flow of a power-law fluid between rigid spheres. J Non-Newton Fluid Mech 100:151–164

    Article  Google Scholar 

  • Lipscomb GG, Denn MM (1984) Flow of Bingham fluids in complex geometries. J Non-Newton Fluid Mech 14:337–346

    Article  Google Scholar 

  • Matsoukas A, Mitsoulis E (2003) Geometry effects in squeeze flow of Bingham plastics. J Non-Newton Fluid Mech 109:231–240

    Article  Google Scholar 

  • McClelland MA, Finlayson BA (1983) Squeezing flow of elastic liquids. J Non-Newton Fluid Mech 13:181–201

    Article  Google Scholar 

  • Meeten GH (2000) Yield stress of structured fluids measured by squeeze flow. Rheol Acta 39:399–408

    Article  Google Scholar 

  • Meeten GH (2001) Squeeze flow between plane and spherical surfaces. Rheol Acta 40:279–288

    Article  Google Scholar 

  • Meeten GH (2002) Constant-force squeeze flow of soft solids. Rheol Acta 41:557–566

    Article  Google Scholar 

  • Meeten GH (2004a) Squeeze flow of soft solids between rough surfaces. Rheol Acta 43:6–16

    Article  Google Scholar 

  • Meeten GH (2004b) Effect of plate roughness in squeeze flow rheometry. J Non-Newton Fluid Mech 124:51–60

    Article  Google Scholar 

  • Nicolas Y, Paques M, Knabel A, Steyer A, Munch J-P, Blijdenstein TBJ, Aken GA (2003) Micro-rheology: structural evolution under static and dynamic conditions by simultaneous analysis of confocal microscopy and diffusing wave spectroscopy. Rev Sci Inst 74:3838–3844

    Article  Google Scholar 

  • Palberg T, Biehl R (2003) Sheared colloidal crystals in confined geometry: a real space study on stationary structures under shear. Faraday Disc 123:133–143

    Article  Google Scholar 

  • Phan-Thien N, Zheng R (1991) On the continuous squeezing flow in a wedge. Rheol Acta 30:491–496

    Article  Google Scholar 

  • Phan-Thien N, Nasseri S, Bilston LE (2000) Oscillatory squeezing flow of a biological material. Rheol Acta 39:409–417

    Article  Google Scholar 

  • Rodin GJ (1996) Squeeze film between two spheres in a power-law fluid. J Non-Newtonian Fluid Mech 63:141–152

    Article  Google Scholar 

  • See H, Jiang P, Phan-Thien N (2000) Concentration dependence of the linear viscoelastic properties of particle suspensions. Rheol Acta 39:131–137

    Article  Google Scholar 

  • Sherwood JD, Durban D (1998) Squeeze-flow of a Herschel–Bulkley fluid. J Non-Newtonian Fluid Mech 77:115–121

    Article  Google Scholar 

  • Soga I, Dhinojwala A, Granick S (1998) Optorheological studies of sheared confined fluids with mesoscopic thickness. Langmuir 14:1156–1161

    Article  Google Scholar 

  • Tanner RI (1963) Non-Newtonian lubrication theory and its application to the short journal bearing. Aust J Appl Sci 14:129–136

    Google Scholar 

  • Usha R, Vimila P (2002) Curved squeeze film with inertial effects-energy integral approach. Fluid Dyn Res 30:139–153

    Article  Google Scholar 

  • Walberer JA and McHugh AJ (2001) The linear viscoelastic behavior of highly filled polydimethylsiloxane measured in shear and compression. J Rheol 45:187–201

    Article  Google Scholar 

  • Zhu Y, Granick S (2001) Friction and the continuum limit—where is the boundary? Mat Res Symp Proc 651:1–8

    Google Scholar 

Download references

Acknowledgements

For useful discussions, I thank MJ Adams (Unilever), WG Griffin (University of Cambridge), CJ Lawrence (Imperial College London), and JD Sherwood (Schlumberger).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Henry Meeten.

Appendix

Appendix

Exact and approximate expressions for I(n, b)

Exact expressions for I(n, b) of Eq. 17, for n=0, 1/2, 1, 3/2, and 2, are compared with the approximation of Eq. 18 to I(n, b) given by Lian et al. (2001), using their parameter \(b = R\sqrt {2/\left( {Dh{^\prime }} \right)} = \sqrt {2H{^\prime }/h{^\prime }} \)

n=0

$$ I\left( {0,b} \right)_{{\text{Eq 17}}} = 2b - 2\sqrt 2 \tan ^{ - 1} \left( {b/2^{1/2} } \right). $$
$$ I\left( {0,b} \right)_{{\text{Eq}}{\text{. 17}},\,h' \to 0} \cong 2b - \pi \sqrt 2 + \frac{4} {b} - \frac{8} {{3b^2 }} + \cdots \cong 2b - 4.442 + \frac{4} {b} - \frac{8} {{3b^2 }} + \cdots $$
$$ I\left( {0,b} \right)_{{\text{Eq}}{\text{. 18, }}h' \to 0} = 2b - 4.500 + \frac{4} {b}. $$

n=1/2

$$ I\left( {\tfrac{1} {2},b} \right)_{{\text{Eq}}{\text{. 17}}} = \frac{3} {{2^{7/4} }}\ln \left( {\frac{{1 - 2^{1/4} b^{1/2} + 2^{ - 1/2} b}} {{1 + 2^{1/4} b^{1/2} + 2^{ - 1/2} b}}} \right) + \frac{3} {{2^{3/4} }}\tan ^{ - 1} \left( {\frac{{2^{3/4} b^{1/2} }} {{2^{1/2} - b}}} \right) - \frac{{2b^{3/2} }} {{2 + b^2 }}. $$
$$ I\left( {\tfrac{1} {2},b} \right)_{Eq.{\text{ }}17,{\text{ }}h' \to 0} \cong \frac{{3\pi }} {{2^{3/4} }} - \frac{8} {{b^{1/2} }} + \frac{{32}} {{5b^{5/2} }} - \cdots \cong 5.604 - \frac{8} {{b^{1/2} }} + \frac{{32}} {{5b^{5/2} }} - \cdots $$
$$ I\left( {\tfrac{1} {2},b} \right)_{{\text{Eq (18), }}h{^\prime } \to 0} = 5.587 - \frac{8} {{b^{1/2} }} + \frac{{32}} {{5b^{5/2} }}. $$

n=1

$$ I\left( {1,b} \right)_{{\text{Eq}}{\text{. 17}}} = \frac{{b^4 }} {{\left( {2 + b^2 } \right)^2 }}. $$
$$ I\left( {1,b} \right)_{{\text{Eq}}{\text{. 17, }}h' \to 0} \cong 1 - \frac{4} {{b^2 }} + \frac{{12}} {{b^4 }} \cdots $$
$$ I\left( {1,b} \right)_{{\text{Eq}}{\text{. 18, }}h' \to 0} = 0.995 - \frac{4} {{b^2 }} + \frac{{12}} {{b^4 }}. $$

n=3/2

$$ I\left( {\tfrac{3} {2},b} \right)_{{\text{Eq}}{\text{. 17}}} = \frac{5} {{2^{25/4} }}\ln \left( {\frac{{1 + 2^{1/4} b^{1/2} + 2^{ - 1/2} b}} {{1 - 2^{1/4} b^{1/2} + 2^{ - 1/2} b}}} \right) + \frac{5} {{2^{21/4} }}\tan ^{ - 1} \left( {\frac{{2^{5/4} b^{1/2} }} {{2^{1/2} - b}}} \right) + \frac{{\left( {5/24} \right)b^{1/2} }} {{2 + b^2 }} - \frac{{\left( {5/3} \right)b^{1/2} }} {{\left( {2 + b^2 } \right)^2 }} - \frac{{\left( {8/3} \right)b^{5/2} }} {{\left( {2 + b^2 } \right)^3 }}. $$
$$ I\left( {\tfrac{3} {2},b} \right)_{{\text{Eq}}{\text{. }}17,{\text{ }}h' \to 0} \cong \frac{{5\pi }} {{2^{21/4} }} - \frac{{32}} {{7b^{7/2} }} + \frac{{47}} {{2b^{11/2} }} - \cdots \cong 0.4128 - \frac{{32}} {{7b^{7/2} }} + \frac{{23.5}} {{b^{11/2} }} - \cdots $$
$$ I\left( {\tfrac{3} {2},b} \right)_{{\text{Eq}}{\text{. 18, }}h' \to 0} = 0.4122 - \frac{{32}} {{7b^{1/2} }} + \frac{{23.273}} {{b^{11/2} }}. $$

n=2

$$ I\left( {2,b} \right)_{{\text{Eq}}{\text{. 17}}} = \frac{3} {{2^{9/2} }}\tan ^{ - 1} \left( {\frac{b} {{2^{1/2} }}} \right) + \frac{{b\left( {10 + 3b^2 } \right)}} {{16\left( {2 + b^2 } \right)^2 }} - \frac{{2b\left( {2 + 3b^2 } \right)}} {{\left( {2 + b^2 } \right)^4 }}. $$
$$ I\left( {2,b} \right)_{{\text{Eq}}{\text{. }}17,{\text{ }}h' \to 0} \cong \frac{{3\pi }} {{2^{11/2} }} - \frac{{32}} {{5b^5 }} + \frac{{320}} {{7b^7 }} \cdots \cong 0.2083 - \frac{{32}} {{5b^5 }} + \frac{{320}} {{7b^7 }} \cdots $$
$$ I\left( {2,b} \right)_{{\text{Eq}}{\text{. 18, }}h' \to 0} = 0.2104 - \frac{{32}} {{5b^5 }} + \frac{{320}} {{7b^7 }}. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meeten, G.H. Flow of soft solids squeezed between planar and spherical surfaces. Rheol Acta 44, 563–572 (2005). https://doi.org/10.1007/s00397-005-0437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-005-0437-4

Keywords

Navigation