Skip to main content
Log in

Headgroup effect on drag reduction and rheological properties of micellar solutions of quaternary ammonium surfactants

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Two sets of cationic surfactants each with essentially the same alkyl chains but different headgroup structures were studied to investigate the effects of surfactant headgroup structure on micelle microstructures, drag reduction (DR) and rheological properties at certain counterion and surfactant concentrations. Cetyldimethylethylammonium bromide (CDMEAB) was compared with alkyltrimethyl ammonium bromide (CnTAB) and benzyldimethyl(hydrogenated tallow)ammonium chloride (DMHTB) was compared with alkyltrimethylammonium chloride (CmTAC), respectively. Surfactants with larger headgroups showed lower high temperature limits for DR. CDMEAB systems have better DR abilities than CnTAB below room temperature but the opposite is true at higher temperatures. DMHTB has stronger counterion binding ability than CmTAC, giving better DR properties than CmTAC at low counterion concentration, but has a lower upper temperature limit for DR. These results provide further understanding of the self-assembly nature of threadlike micelles of cationic surfactants and guidance for design of effective surfactant structures to meet particular DR requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Appell J, Porte G, Khatory A, Kern F, Candau SJ (1992) Static and dynamic properties of a network of wormlike surfactant micelles (cetylpyridinium chlorate in sodium chlorate brine). J Phys II 2:1045

    Article  CAS  Google Scholar 

  • Bacaloglu R, Blaskó A, Bunton CA, Cerichelli G, Shirazi A (1991) Segmental motions of free and micellized cationic surfactants Carbon-13 spin-lattice relaxation. Langmuir 7:1107

    Article  CAS  Google Scholar 

  • Berret J-F, Gamez-Corrales R, Oberdisse J, Walker LM, Lindner P (1998) Flow-structure relationship of shear-thickening surfactant solutions. Europhys Lett 41:677

    Article  CAS  Google Scholar 

  • Chou L-C (1991) PhD Dissertation, The Ohio State University, Columbus, OH

  • Evans DE, Miller DD (1992) Organized solutions in polar solvents. In: Friberg SE, Lindman B (eds) Organized solutions, Surfactant Science Series vol 44. Marcel Dekker, New York, pp 33–44

    Google Scholar 

  • Hassan PA, Valaulikar BS, Manohar C, Kern F, Bourdieu L, Candau SJ (1996) Vesicle to micelle transition: rheological investigations. Langmuir 12:4350

    Article  CAS  Google Scholar 

  • Hoffman S, Hoffman H (1998) Shear-induced micellar structures in ternary surfactant mixtures: the influence of the structure of the micellar interface. J Phys Chem B 102:5614

    Article  Google Scholar 

  • Hoffmann H, Hofmann S, Kästner U (1996) Viscoelastic surfactant systems under shear. In: Glass JE (ed) Hydrophilic polymers: performace with environmental acceptance. ACS Symposium Series 248:219

    CAS  Google Scholar 

  • In M, Warr GG, Zana R (1999) Ddynamics of branched threadlike micelles. Phys Rev Lett 83:2278

    Article  CAS  Google Scholar 

  • Israelachvili JN (1991) Intermolecular and Surface Forces, 2nd ed. Academic Press, London

    Google Scholar 

  • Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Farad T 2 72:1525

    Article  Google Scholar 

  • Jindal VK, Kalus J, Pilsl H, Hoffmann H, Lindner P (1990) Dynamic small-angle neutron scattering study of rodlike micelles in a surfactant solution. J Phys Chem 94:3129

    Article  CAS  Google Scholar 

  • Khatory A, Kern F, Lequeux F, Appell J, Porte G, Morie N, Ott A, Urbach W (1993) Entangled versus multiconnected network of wormlike micelles. Langmuir 9:933

    Article  CAS  Google Scholar 

  • Koch S (1997) Formation of the shear-induced state in dilute cationic surfactant solutions. Rheol Acta 36:639

    CAS  Google Scholar 

  • Lequeux F (1992) Reptation of connected wormlike micelles. Europhys Lett 19:675

    CAS  Google Scholar 

  • Lin Z (1996) Branched worm-like micelles and their networks. Langmuir 12:1729

    Article  CAS  Google Scholar 

  • Lin Z, Lu B, TalmonY, Zakin JL, Zheng Y, Davis HT, Scriven LE (2001a) Influence of surfactant concentration and counterion to surfactant ratio on rheology of wormlike micelles. J Colloid Interface Sci 239:543

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Zakin JL, Zheng Y, Davis HT, Scriven LE, Talmon Y (2001b) Comparison of the effects of dimethyl and dichloro benzoate counterions on drag reduction, rheological behaviors, and microstructures of a cationic surfactant. J Rheology 45:963

    Article  CAS  Google Scholar 

  • Liu C, Pine DJ (1996) Shear-induced gelation and fracture in micellar solutions. Phys Rev Lett 77:2121

    Article  CAS  PubMed  Google Scholar 

  • Lu B (1997) Ph.D. Dissertation, The Ohio State University, Columbus, OH

  • Lu B, Li X, Zakin JL, Talmon Y (1997) A non-viscoelastic drag reducing cationic surfactant system. J Non-Newtonian Fluid Mech 71:59

    Article  CAS  Google Scholar 

  • Lu B, Li X, Scriven LE, Davis HT, Talmon Y, Zakin JL (1998) Effect of chemical structure on viscoelasticity and extensional viscosity of drag-reducing cationic surfactant solutions. Langmuir 14:8

    Article  CAS  Google Scholar 

  • Macosko CW (1994) Rheology: Principles, Measurements, and Applications. Wiley-VCH, New York

    Google Scholar 

  • Manohar C, Rao URK, Valaulikar BS, Iyer RM (1986) On the origin of viscoelasticity in micellar solutions of cetyltrimethylammonium bromide and sodium salicylate. J Chem Soc Chem Comm 5:379

    Article  Google Scholar 

  • May S, Bohbot Y, Ben-Shaul A (1997) Molecular theory of bending elasticity and branching of cylindrical micelles. J Phys Chem B 101:8648

    Article  CAS  Google Scholar 

  • Mendes E, Narayanan J, Oda R, Kern F, Candau SJ (1997) Shear-induced vesicle to wormlike micelle transition. J Phys Chem B 101:2256

    Article  CAS  Google Scholar 

  • Myska J, Stern P (1998) Significance of shear induced structure in surfactants for drag reduction. Colloid Polym Sci 276:816

    Article  CAS  Google Scholar 

  • Narayanan J, Manohar C, Kern F, Lequeux F, Candau SJ (1997) Linear viscoelasticity of wormlike micellar solutions found in the vicinity of a vesicle-micelle transition. Langmuir 13:5235

    Article  CAS  Google Scholar 

  • Oda R, Panizza P, Schmutz M, Lequeux F (1997) Direct evidence of the shear-induced structure of wormlike micelles: gemini surfactant 12-2-12. Langmuir 13:6407

    Article  CAS  Google Scholar 

  • Ohlendorf D, Interthal W, Hoffmann H (1986) Surfactant systems for drag reduction: physicochemical properties and rheological behavior. Rheol Acta 25:468

    CAS  Google Scholar 

  • Okano LT, Quina FH, El Seoud OA (2000) Fluorescence and light-scattering studies of the aggregation of cationic surfactants in aqueous solution: effects of headgroup structure. Langmuir 16:3119

    Article  CAS  Google Scholar 

  • Olsson U, Söderman O, Guéring P (1986) Characterization of micellar aggregates in viscoelastic surfactant solutions. A nuclear magnetic resonance and light scattering study. J Phys Chem 90:5223

    Article  CAS  Google Scholar 

  • Qi Y (2003) PhD Dissertation, The Ohio State University, Columbus, OH

  • Qi Y, Zakin JL (2002) Chemical and rheological characterization of drag-reducing cationic surfactant systems. Ind Eng Chem Res 41:6326

    Article  CAS  Google Scholar 

  • Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions: model systems for rheological research. Molecular Physics 74:933

    CAS  Google Scholar 

  • Richtering W (2001) Rheology and shear induced structures in surfactant solutions. Curr Opin Colloid Interface Sci 6:446

    Article  CAS  Google Scholar 

  • Różycka-Roszak B, Cierpicki T (1999) 1H NMR studies of aqueous micellar solutions of N-dodecyl- N,N-dimethyl-N-benzylammonium chloride. J Colloid Int Sci 218:529

    Article  Google Scholar 

  • Rose GD, Foster KL (1989) Drag reduction and rheological properties of cationic viscoelastic surfactant formulations. J Non-Newtonian Fluid Mech 31:59

    Article  CAS  Google Scholar 

  • Schmitt V, Schosseler F, Lequeux F (1995) Structure of salt-free wormlike micelles: signature by SANS at rest and under shear. Europhys Lett 30:31

    CAS  Google Scholar 

  • Shikata T, Hirata H, Kotaka T (1988) Micelle formation of detergent molecules in aqueous media. Langmuir 4:354

    Article  CAS  Google Scholar 

  • Smith B (1993) PhD Dissertation, Ohio State University, Columbus, OH

  • Smith BC, Chou L-C, Zakin JL (1994) Measurement of the orientational binding of counterions by nuclear magnetic resonance measurements to predict drag reduction in cationic surfactant micelle solutions. J Rheol 38:73

    Article  CAS  Google Scholar 

  • Tanford C (1974) Theory of micelle formation in aqueous solutions. J Phys Chem 78:2469

    Article  CAS  Google Scholar 

  • Tanford C (1980) The Hydrophobic Effect: Formation of Micelles and Biological Membranes. Wiley, New York

    Google Scholar 

  • Truong MT, Walker LM (2002) Quantifying the importance of micellar microstructure and electrostatic interactions on the shear-induced structural transition of cylindrical micelles. Langmuir 18:2024

    Article  CAS  Google Scholar 

  • Turner MS, Marques C, Cates ME (1993) Dynamics of wormlike micelles: the “bond-interchange” reaction scheme. Langmuir 9:695

    Article  CAS  Google Scholar 

  • Škerjanc J, Kogej K, Cerar J (1999) Equilibrium and transport properties of alkylpyridinium bromides. Langmuir 15:5023

    Article  Google Scholar 

  • Wunderlich I, Hoffmann H, Rehage H (1987) Flow birefringence and rheological measurements on shear induced micellar structures. Rheol Acta 26:532

    Article  CAS  Google Scholar 

  • Zana R (1991) Micellization of cationic surfactants. In: Rubingh DN, Holland PM (eds) Cationic surfactants physical chemistry, vol 37. Marcel Dekker, NY, pp 41–86

    Google Scholar 

  • Zheng Y, Lin Z, Zakin JL, Talmon Y, Davis HT, Scriven LE (2000) Cryo-TEM imaging the flow-induced transition from vesicles to threadlike micelles. J Phys Chem B 104:5263

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ying Zhang appreciates the support of New Energy Development Organization (NEDO), Japan. Yunying Qi was partially supported by an Ohio State University Presidential Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques L. Zakin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Qi, Y. & Zakin, J.L. Headgroup effect on drag reduction and rheological properties of micellar solutions of quaternary ammonium surfactants. Rheol Acta 45, 42–58 (2005). https://doi.org/10.1007/s00397-005-0448-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-005-0448-1

Keywords

Navigation