Skip to main content
Log in

Effects of particle softness on the rheology and yielding of colloidal glasses

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We studied the linear and nonlinear rheology of colloidal glasses consisting of hard spheres and soft core-shell particles at several volume fractions to explore the effects of particle softness on the mechanical properties and yielding. Creep and recovery and oscillatory shear measurements were used to determine the shear elastic modulus and the yield strain. Both hard and soft sphere glasses exhibited ‘entropic cage elasticity’ below random close packing, whereas for compressed soft spheres at higher effective volume fractions, the yield strain was determined by shell elasticity. The shear modulus followed a strong increase with volume fraction for hard spheres and a much weaker one for soft particles reflecting their interparticle potential. Nonlinear effects, revealed as strong distortions of the stress signal during yielding, were analyzed via Fourier transform rheology and Lissajous plots. The significant contribution of the nonlinearities was analyzed in terms of strain softening and hardening mechanisms within a cycle of oscillation and discussed in relation to particle softness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Antl L, Goodwin JB, Hill RD, Otewill JB, Owens SM, Papworth S, Waters JB (1986) The preparation of poly(methyl methacrylate) latices in non-aqueous media. Colloids Surf 17:67

    Article  CAS  Google Scholar 

  • Bender JW, Wagner NJ (1996) Reversible shear thickening in monodisperse and bidesperse colloidal dispersions. J Rheol 40:899

    Article  CAS  Google Scholar 

  • Bonnecaze RT, Brady JF (1992) Yield stresses in electrorheological fluids. J Rheol 36:73–115

    Article  CAS  Google Scholar 

  • Bouchaud JP (1992) Weak ergodicity breaking and aging in disordered systems. J Phys I 2:1705–1713

    Article  Google Scholar 

  • Brader JM, Voigtmann T, Cates ME, Fuchs M (2007) Dense colloidal suspensions under time-dependent shear. Phys Rev Lett 98:058301

    Article  CAS  Google Scholar 

  • Buscall R, Goodwin JW, Hawkins MW, Ottewill RH (1982) Viscoelastic properties of concentrated lattices 2. Theoretical analysis. J Chem Soc Faraday Trans 1 78:2889–2899

    Article  CAS  Google Scholar 

  • Carrier V, Petekidis G (2007) Non-linear rheology of colloidal glasses of soft core-shell particles. J Rheol (submitted)

  • Chang C, Boger DV, Nguyen QD (1998) The yielding of waxy crude oils. Ind Eng Chem Res 37:1551–1559

    Article  CAS  Google Scholar 

  • Chen L-B, Zukoski CF (1990) Flow of ordered latex suspensions: yielding and catastrophic shear thinning. J Chem Soc Faraday Trans 86:2629–2639

    Article  CAS  Google Scholar 

  • Cho KS, Hyun K, Ahn KH, Lee SJ (2005) A geometrical interpretation of large amplitude oscillatory shear response. J Rheol 49:747–758

    Article  CAS  Google Scholar 

  • Chow MK, Zukoski CF (1995) Nonequilibrium behavior of dense suspensions of uniform particles: Volume fraction and size dependence of rheology and microstructure. J Rheol 39:33–59

    Article  CAS  Google Scholar 

  • Cloitre M, Borrega R, Monti F, Leibler L (2003) Glassy dynamics and flow properties of soft colloidal pastes. Phys Rev Lett 90:068303

    Article  Google Scholar 

  • Coussot P, N, Guyen QD, Huynh HT, Bonn D (2002) Avalanche behavior in yield stress fluids. Phys Rev Lett 88:175501

    Article  Google Scholar 

  • Coussot P, Tabuteau H, Chateau X, Tocquer L, Ovarlez G (2006) Aging and solid or liquid behavior in pastes. J Rheol 50:975–994

    Article  CAS  Google Scholar 

  • Cracium L, Carreau PJ, Heuzey M-C, van de Ven TGM, Moan M (2003) Rheological properties of concentrated latex suspensions of poly(styrene-butadiene). Rheol Acta 42:410–420

    Article  Google Scholar 

  • Crassous JJ, Siebenbuerger M, Ballauff M, Drechsler M, Heinrich O, Fuchs M (2006) Thermosensitive core-shell particles as model systems for studying the flow behavior of concentrated colloidal dispersions. J Chem Phys 125:204906

    Article  CAS  Google Scholar 

  • Deike I, Ballauff M, Willenbacher N, Weiss A (2001) Rheology of thermosensitive latex particles including the high-frequency limit. J Rheol 45:709–720

    Article  CAS  Google Scholar 

  • Derec C, Ducouret G, Ajdari A, Lequeux F (2003) Aging and nonlinear rheology in suspensions of polyethylene oxide-protected silica particles. Phys Rev E 67:061403

    Article  Google Scholar 

  • Dingenouts N, Norhausen C, Ballauff M (1998) Observation of the volume transition in thermosensitive core-shell latex particles by small-angle X-ray scattering. Macromolecules 31:8912–8917

    Article  CAS  Google Scholar 

  • Foss DR, Brady JF (2000) Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation. J Fluid Mech 407:167

    Article  CAS  Google Scholar 

  • Fuchs M, Cates ME (2003) Schematic models for dynamic yielding of sheared colloidal glasses. Faraday Discuss 123:267–286

    Article  CAS  Google Scholar 

  • Fuchs M, Ballauff M (2005) Flow curves of dense colloidal dispersions: schematic model analysis of the shear-dependent viscosity near the colloidal glass transition. J Chem Phys 122:094707

    Article  Google Scholar 

  • Gadala-Maria F, Acrivos A (1980) Shear-induced structure in a concentrated suspension of solid spheres. J Rheol 24:799–814

    Article  CAS  Google Scholar 

  • Helgeson ME, Wagner NJ, Vlassopoulos D (2007) Viscoelasticity and shear melting of colloidal star polymer glasses. J Rheol 51:297–316

    Article  CAS  Google Scholar 

  • Heymann L, Peukert S, Aksel N (2002) Investigation of the solid–liquid transition of highly concentrated suspensions in oscillatory amplitude sweeps. J Rheol 46:93–112

    Article  CAS  Google Scholar 

  • Kallus S, Willenbacher N, Kirsch S, Distler D, Neidhofer T, Wilhelm M, Spiess HW (2001) Characterization of polymer dispersions by Fourier transform rheology. Rheol Acta 40:552–559

    Article  CAS  Google Scholar 

  • Khan SA, Schnepper CA, Armstrong RC (1988) Foam rheology: III. Measurement of shear flow properties. . J Rheol 27:69–92

    Article  Google Scholar 

  • Krishnamurthy L-N, Wagner J, Mewis J (2005) Shear thickening in polymer stabilized colloidal dispersions. J Rheol 49:1347–1360

    Article  CAS  Google Scholar 

  • Klein CO, Spiess HW, Calin A, Balan C, Wilhelm M (2007) Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening and wall slip response. Macromolecules 40(12):4250–4259

    Article  CAS  Google Scholar 

  • Kobelev V, Schweizer KS (2005) Strain softening, yielding, and shear thinning in glassy colloidal suspensions. Phys Rev E 71:021401

    Article  Google Scholar 

  • Lee YS, Wagner NJ (2003) Dynamic properties of shear thickening colloidal suspensions. Rheol Acta 42:199–208

    CAS  Google Scholar 

  • Mason TG, Weitz DA (1995) Linear viscoelasticity of colloidal hard-sphere suspensions near the glass-transition. Phys Rev Lett 75:2770–2773

    Article  CAS  Google Scholar 

  • Mason TG, Bibette J, Weitz DA (1996) Yielding and flow of monodisperse emulsions. J Colloid Int Sci 179:439–448

    Article  CAS  Google Scholar 

  • Mason TG, Lacasse M-D, Grest GS, Levine D, Bibette J, Weitz DA (1997) Osmotic pressure and viscoelastic shear moduli of concentrated emulsions. Phys Rev E 56:3150–3166

    Article  CAS  Google Scholar 

  • Miyazaki K, Wyss HM, Weitz DA, Reichman DR (2006) Nonlinear viscoelasticity of metastable complex fluids. Europhys Lett 75:915–921

    Article  CAS  Google Scholar 

  • Moller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stress in practice. Soft Matter 2:274–283

    Article  CAS  Google Scholar 

  • Mujumdar A, Beris AN, Metzer AB (2002) Transient phenomena in thixotropic systems. J Non-Newton Fluid Mech 102:157–178

    Article  CAS  Google Scholar 

  • Neidhöfer T, Wilhelm M, Debbaut B (2003) Fourier-transform rheology experiments and finite-element simulations on linear polystyrene solutions. J Rheol 47:1351

    Article  Google Scholar 

  • N’Guyen QD, Boger DV (1983) Yield stress measurements for concentrated suspensions. J Rheol 27:321

    Article  Google Scholar 

  • Ozon F, Petekidis G, Vlassopoulos D (2006) Signatures of nonergodicity transition in a soft colloidal system. Ind Eng Chem Res 45:6946–6952

    Article  CAS  Google Scholar 

  • Paulin SE, Ackerson BJ, Wolfe MS (1996) Equilibrium and shear induced nonequilibrium phase behavior of PMMA microgel spheres. J Colloid Interface Sci 178:251

    Article  CAS  Google Scholar 

  • Petekidis G, Moussaïd A, Pusey PN (2002) Rearrangements in hard-sphere glasses under oscillatory shear strain. Phys Rev E 66:51402

    Article  CAS  Google Scholar 

  • Petekidis G, Vlassopoulos D, Pusey PN (2003) Yielding and flow of colloidal glasses. Faraday Discuss 123:287

    Article  CAS  Google Scholar 

  • Petekidis G, Vlassopoulos D, Pusey PN (2004) Rearrangements in hard-sphere glasses under oscillatory shear strain. J Phys Condens Matter 16:1–9

    Article  Google Scholar 

  • Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Pusey PN, Poon WCK (2006) Yielding of colloidal glasses. Europhys Lett 75:624–630

    Article  CAS  Google Scholar 

  • Pipkin AA (1986) Lectures on vicoelastic theory, 2nd edn. Springer, New York

  • Pusey PN (1991) In: Hansen JP, Levesque D, Zinn-Justin J, Session LI (eds) Liquids, freezing and the glass transition, Les Houches. Elsevier, Amsterdam

    Google Scholar 

  • Pusey PN, van Megen W (1986) Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320:340

    Article  CAS  Google Scholar 

  • Pusey PN, van Megen W (1987) Observation of a glass transition in suspensions of spherical colloidal particles. Phys Rev Lett 59:2083

    Article  CAS  Google Scholar 

  • Rao RB, Kobelev VL, Li Q, Lewis JA, Schweizer KS (2006) Nonlinear elasticity and yielding of nanoparticle glasses. Langmuir 22:2441–2443

    Article  CAS  Google Scholar 

  • Raynaud L, Ernst B, Verge C, Mewis J (1996) Rheology of aqueous latices with adsorbed stabilizer layers. J Colloid Interface Sci 181:11–19

    Article  CAS  Google Scholar 

  • Schärtl W, Sillescu H (1994) Brownian dynamics of polydisperse colloidal hard spheres: equilibrium structures and random close packings. J Stat Phys 77:1007

    Article  Google Scholar 

  • Senff H, Richtering W, Norhausen C, Weiss A, Ballauff M (1999) Rheology of a temperature sensitive core-shell latex. Langmuir 15:102–106

    Article  CAS  Google Scholar 

  • Sollich P (1998) Rheological constitutive equation for a model of soft glassy materials. Phys Rev E 58:738–759

    Article  CAS  Google Scholar 

  • Stieger M, Pedersen JS, Lindner P, Richtering W (2004) Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and Small-Angle Neutron Scattering Study. Langmuir 20:7283–7292

    Article  CAS  Google Scholar 

  • Tiu C, Guo J, Uhlherr PHT (2006) Yielding behaviour of viscoplastic materials. J Ind Eng Chem 12:653–662

    CAS  Google Scholar 

  • Wagner NJ (1993) The high-frequency shear modulus of colloidal suspensions and the effects of hydrodynamic interactions. J Colloid Interface Sci 161:169

    Article  CAS  Google Scholar 

  • Wilhelm M, Maring D, Spiess HW (1998) Fourier-transform rheology. Rheol Acta 37:399

    Article  CAS  Google Scholar 

  • Yziquel F, Carreau PJ, Moan M, Tanguy PA (1999a) Rheological modeling of concentrated colloidal suspensions. J Non-Newton Fluid Mech 86:133

    Article  CAS  Google Scholar 

  • Yziquel F, Carreau PJ, Tanguy PA (1999b) Non-linear viscoelastic behavior of fumed silica suspensions. Rheol Acta 38:14–25

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to Alexander Wittemann and Matthias Ballauff for providing the core-shell particles and to Andrew Schofield for the PMMA hard spheres. We also thank Dimitris Vlassopoulos for useful discussions and for his comments on the manuscript. Financial support through the EU NoE ‘SoftComp’ (NMP3-CT-2004-502235) and the Marie-Curie ToK ‘Cosines’ (MTCD-CT-2005-029944) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Petekidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Grand, A., Petekidis, G. Effects of particle softness on the rheology and yielding of colloidal glasses. Rheol Acta 47, 579–590 (2008). https://doi.org/10.1007/s00397-007-0254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0254-z

Keywords

Navigation