Skip to main content
Log in

Particle-stabilized polymer blends

  • Rapid Communication
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The effect of low-volume fractions of nanoparticles on the morphological processes and the rheological properties of immiscible blends are dis cussed. For blends of poly-isobutylene and poly-dimethylsiloxane stabilized by silica particles, particles help to suppress coalescence. Yet, particle bridging of different droplets has also been reported and leads to a slow build up of a gel-like structure, which could interfere with the morphology evolution under flow. We first investigated the importance of this effect under relevant conditions. To further assess the relative importance of the different processes in technically relevant polymer–polymer blends, the effect of carbon black particles on morphological processes—coalescence and break-up—in polyamide and ethylene–ethylene–metylacrylate copolymers will be studied using rheological methods. It will be shown that particles affect coalescence and break-up, suggesting that the effect of particles is linked to their effect on interfacial dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ashby NP, Binks BP, Paunov VN (2004) Bridging interaction between a water drop stabilised by solid particles and a planar oil/water interface. Chem Commun 4:436–437

    Article  Google Scholar 

  • Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7:21–41

    Article  CAS  Google Scholar 

  • Binks BP, Desforges A, Duff DG (2007) Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant. Langmuir 23:1098–1106

    Article  CAS  Google Scholar 

  • Binks BP, Horozov TS (2006) Colloidal particles at liquid interfaces. Cambridge University Press, Cambridge

    Google Scholar 

  • Elias L, Fenouillot F, Majeste JC, Cassagnau Ph (2007) Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 48:6029–6040

    Article  CAS  Google Scholar 

  • Grace HP (1982) Dispersion phenomena in high-viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun 14:225–277

    Article  CAS  Google Scholar 

  • Gubbels F, Jerome R, Teyssie P, Vanlathem E, Deltour R, Calderone A, Parente V, Bredas JL (1994) Selective localization of carbon black in immiscible polymer blends—a useful tool to design electrical conductive composites. Macromolecules 27:1972–1974

    Article  CAS  Google Scholar 

  • Gubbels F, Jerome R, Vanlathem E, Deltour R, Blacher S, Brouers F (1998) Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends. Chem Mater 10:1227–1235

    Article  CAS  Google Scholar 

  • Horozov TS, Binks BP (2006) Particle-stabilized emulsions: a bilayer or a bridging monolayer? Angew Chem Int Ed 45:773–776

    Article  CAS  Google Scholar 

  • Midmore BR (1998) Preparation of a novel silica-stabilized oil/water emulsion. Colloids Surf A Physicochem Eng Asp 132:257–265

    Article  CAS  Google Scholar 

  • Mironi-Harpaz I, Narkis M (2001) Electrical behavior and structure of polypropylene/ultrahigh molecular weight polyethylene/carbon black immiscible blends. J Appl Polym Sci 81(1):104–115

    Article  CAS  Google Scholar 

  • Palierne JF (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214

    Article  CAS  Google Scholar 

  • Reynaert S, Moldenaers P, Vermant J (2006) Control over colloidal aggregation in monolayers of latex particles at the oil–water interface. Langmuir 22:4936–4945

    Article  CAS  Google Scholar 

  • Reynaert S, Moldenaers P, Vermant J (2007) Interfacial rheology of stable and weakly aggregated two-dimensional suspensions. Phys Chem Chem Phys 9:6463–6475

    Article  CAS  Google Scholar 

  • Stancik EJ, Kouhkan M, Fuller GG (2004) Coalescence of particle-laden fluid interfaces. Langmuir 20:90–94

    Article  CAS  Google Scholar 

  • Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends. Polym Bull 25:265–271.

    Article  CAS  Google Scholar 

  • Tchoudakov R, Breuer O, Narkis M, Siegmann A (1996) Conductive polymer blends with low carbon black loading: polypropylene/polycarbonate. Polym Netw Blends 6:1–8

    CAS  Google Scholar 

  • Thareja P, Velankar S (2007) Particle-induced bridging in immiscible polymer blends. Rheol Acta 46:405–412

    Article  CAS  Google Scholar 

  • Vermant J, Cioccolo G, Nair KG, Moldenaers P (2004) Coalescence suppression in model immiscible polymer blends by nano-sized colloidal particles. Rheol Acta 43:529–538

    Article  CAS  Google Scholar 

  • Vignati E, Piazza R, Lockhart TP (2003) Pickering emulsions: interfacial tension, colloidal layer morphology, and trapped-particle motion. Langmuir 19:6650–6656

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. B. Ernst and Dr. N. Devaux (Arkema) are acknowledged for providing the materials and for the stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Vermant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vermant, J., Vandebril, S., Dewitte, C. et al. Particle-stabilized polymer blends. Rheol Acta 47, 835–839 (2008). https://doi.org/10.1007/s00397-008-0285-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0285-0

Keywords

Navigation