Skip to main content
Log in

Phenomenology and physical origin of shear localization and shear banding in complex fluids

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We review and compare the phenomenological aspects and physical origin of shear localization and shear banding in various material types, namely emulsions, suspensions, colloids, granular materials, and micellar systems. It appears that shear banding, which must be distinguished from the simple effect of coexisting static-flowing regions in yield stress fluids, occurs in the form of a progressive evolution of the local viscosity toward two significantly different values in two adjoining regions of the fluids in which the stress takes slightly different values. This suggests that from a global point of view, shear banding in these systems has a common physical origin: Two physical phenomena (for example, in colloids, destructuration due to flow and restructuration due to aging) are in competition, and depending on the flow conditions, one of them becomes dominant and makes the system evolve in a specific direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acrivos A, Mauri R, Fan X (1993) Shear-induced resuspension in a Couette device. Int J Multiphase Flow 19:797–802

    Article  MATH  CAS  Google Scholar 

  • Ancey C, Coussot P (1999) Transition frictionnelle visqueuse pour une suspension granulaire. CR Acad Sci Paris 327(IIB):515–522 (in French)

    ADS  CAS  Google Scholar 

  • Bécu L, Grondin P, Colin A, Manneville S (2004) How does a concentrated emulsion flow? Yielding, local rheology, and wall slip. Colloids and surfaces A: physicochem. Eng Aspects 263:146–152

    Article  Google Scholar 

  • Bécu L, Manneville S, Colin A (2006) Yielding and flow in adhesive and non-adhesive concentrated emulsions. Phys Rev Lett 96:138302

    Article  PubMed  ADS  Google Scholar 

  • Benallal A, Billardon R, Geymonat G (1989) Conditions of bifurcation inside and along boundaries for a class of non-standard materials. CR Acad Sci Paris, Série II 308:893–898 (in French)

    MATH  MathSciNet  Google Scholar 

  • Berret JF, Roux DC, Porte G, Lindner P (1994) Shear-induced isotropic-to-nematic phase transition in equilibrium polymers. Europhys Lett 25:521–526

    Article  ADS  CAS  Google Scholar 

  • Berret JF, Porte G, Decruppe JP (1997) Inhomogeneous shear flows of wormlike micelles: a master dynamic phase diagram. Phys Rev E 55:1668–1676

    Article  ADS  CAS  Google Scholar 

  • Bertola V, Bertrand F, Tabuteau H, Bonn D, Coussot P (2003) Wall slip and yielding in pasty materials. J Rheol 1211:47–61

    Google Scholar 

  • Bird RB, Gance D, Yarusso BJ (1982) The rheology and flow of viscoplastic materials. Rev Chem Eng 1:1–70

    Google Scholar 

  • Bonn D, Meunier J, Greffier O, Al-Kahwaji A, Kellay H (1998) Bistability in non-Newtonian flow: rheology of lyotropic liquid crystals. Phys Rev E 58:2115–2118

    Article  ADS  CAS  Google Scholar 

  • Bonn D, Coussot P, Huynh HT, Bertrand F, Debrégeas G (2002) Rheology of soft-glassy materials. Europhys Lett 59:786–792

    Article  ADS  CAS  Google Scholar 

  • Britton MM, Callaghan PT (1997) Two-phase shear band structures at uniform stress. Phys Rev Lett 30:4930–4933

    Article  ADS  Google Scholar 

  • Callaghan PT (2008) Rheo NMR and shear banding. Rheol Acta 47:243–255

    Article  CAS  Google Scholar 

  • Cappelaere E, Berret JF, Decruppe JP, Cressely R, Lindner P (1997) Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: evidence of a shear-induced phase transition. Phys Rev E 56:1869–1878

    Article  ADS  CAS  Google Scholar 

  • Cappelaere E, Cressely R, Decruppe JP (1995) Linear and non-linear rheological behaviour of salt-free aqueous CTAB solutions. Colloids and surfaces A. Physicochem Eng Aspects 104:353–374

    Article  CAS  Google Scholar 

  • Cheng DCH (2003) Characterisation of thixotropy revisited. Rheol Acta 42:372–382

    Article  CAS  Google Scholar 

  • Cottrell AH (1964) The mechanical properties of matter. Wiley, New York

    Google Scholar 

  • Coussot P (2005) Rheometry of pastes, suspensions and granular materials. Wiley, New York

    Book  Google Scholar 

  • Coussot P, Leonov AI, Piau JM (1993) Rheology of concentrated dispersed systems in a low molecular weight matrix. J Non-Newton Fluid Mech 46:179–217

    Article  MATH  CAS  Google Scholar 

  • Coussot P, Raynaud JS, Bertrand F, Moucheront P, Guilbaud JP, Huynh HT, Jarny S, Lesueur D (2002a) Coexistence of liquid and solid phases in flowing soft-glassy materials. Phys Rev Lett 88:218301

    Article  PubMed  ADS  CAS  Google Scholar 

  • Coussot P, Nguyen QD, Huynh HT, Bonn D (2002b) Avalanche behavior in yield stress fluids. Phys Rev Lett 88:175501

    Article  PubMed  ADS  Google Scholar 

  • Coussot P, Tocquer L, Lanos C, Ovarlez G (2008) Macroscopic vs local rheology of yield stress fluids. J Non-Newton Fluid Mech. doi:10.1016/j.jnnfm.2008.08.003

  • Da Cruz F (2004) Flow and jamming of dry granular materials. Ph.D. thesis, ENPC, Marne la Vallée (in French)

  • Decruppe JP, Cressely R, Makhloufi R, Cappelaere E (1995) Flow birefringence experiments showing a shear-banding structure in a CTAB solution. Colloid Polym Sci 273:346–351

    Article  CAS  Google Scholar 

  • Decruppe JP, Lerouge S, Berret JF (2001) Insight in shear banding under transient flow. Phys Rev E 63:022501

    Article  ADS  CAS  Google Scholar 

  • Dhont JKG, Briels WJ (2008) Gradient and vorticity banding. Rheol Acta 47:257–281

    Article  CAS  Google Scholar 

  • Falk ML, Langer JS (1998) Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E 57:7192–7205

    Article  ADS  CAS  Google Scholar 

  • Fall A (2008) Ph.D. thesis, Univ. Paris VI

  • Fielding SM (2007) Complex dynamics of shear banded flows. Soft Matter 3:1262–1279

    Article  CAS  Google Scholar 

  • Fischer E, Callaghan PT (2000) Is birefringence band a shear band? Europhys Lett 50:803–809

    Article  ADS  CAS  Google Scholar 

  • Gilbreth C, Sullivan S, Dennin M (2006) Flow transitions in two-dimensional foams. Phys Rev E 74:051406

    Article  ADS  Google Scholar 

  • Goyon J, Colin A, Ovarlez G, Ajdari A, Bocquet L (2008) Spatial cooperativity in soft glassy flows. Nature 454:84–87

    Article  PubMed  ADS  CAS  Google Scholar 

  • Hernandez-Acosta S, Gonzalez-Alvarez A, Manero O, Mendez-Sanchez AF, Perez-Gonzalez J, de Vargas L (1999) Capillary rheometry of micellar aqueous solutions. J Non-Newton Fluid Mech 85:229–247

    Article  MATH  CAS  Google Scholar 

  • Herzhaft B, Rousseau L, Neau L, Moan M, Bossard F (2002) Influence of temperature and clays/emulsion microstructure on oil-based mud low shear rate rheology. Soc Petrol Eng 77818:1–8

    Google Scholar 

  • Hill R (1952) On discontinuous plastic states with special references to localized neking in thin sheets. J Mech Phys Solids 1:19

    Article  ADS  MathSciNet  Google Scholar 

  • Holmes WM, Lopez-Gonzalez MR, Callaghan PT (2003) Fluctuations in shear-banded flow seen by NMR velocimetry. Europhys Lett 64:274–280

    Article  ADS  CAS  Google Scholar 

  • Holmes WM, Callaghan PT, Vlassopoulos D, Roovers J (2004) Shear banding phenomena in ultrasoft colloidal glasses. J Rheol 48:1085–1102

    Article  ADS  CAS  Google Scholar 

  • Holmqvist P, Daniel C, Hamley IW, Mingvanish W, Booth C (2002) Inhomogeneous flow in a micellar solution of a diblock copolymer: creep rheometry experiments. Colloids surfaces A. Physicochem Eng Aspects 196:39

    Article  CAS  Google Scholar 

  • Huang N, Ovarlez G, Bertrand F, Rodts S, Coussot P, Bonn D (2005) Flow of wet granular materials. Phys Rev Lett 94:028301

    Article  PubMed  ADS  CAS  Google Scholar 

  • Jarny S, Roussel N, Rodts S, Le Roy R, Coussot P (2005) Rheological behavior of cement pastes from MRI velocimetry. Concrete Cement Res 35:1873–1881

    Article  CAS  Google Scholar 

  • Kabla A, Debrégeas G (2003) Local stress relaxation and shear banding in a dry foam under shear. Phys Rev Lett 90:258303

    Article  PubMed  ADS  Google Scholar 

  • Lauridsen J, Chanan G, Dennin M (2004) Velocity profiles in slowly sheared bubble rafts. Phys Rev Lett 93:018303

    Article  ADS  Google Scholar 

  • Lerouge S, Decruppe JP, Berret JF (2000) Correlation between rheological and optical properties of micellar solution under shear banding flow. Langmuir 16:6464–6474

    Article  CAS  Google Scholar 

  • Liu AJ, Nagel SR (1998) Jamming is not just cool any more. Nature 396:21–22

    Article  ADS  CAS  Google Scholar 

  • Mair RW, Callaghan PT (1997) Shear flow of wormlike micelles in pipe and cylindrical Couette geometries as studied by nuclear magnetic resonance microscopy. J Rheol 41:901–923

    Article  ADS  CAS  Google Scholar 

  • Makhloufi R, Decruppe JP, Aït-Ali A, Cressely R (1995) Rheological study of worm-like micelles undergoing a shear banding flow. Europhys Lett 32:253–258

    Article  ADS  CAS  Google Scholar 

  • Manneville S (2008) Recent probes of shear banding. Rheol Acta 47:301–318

    Article  CAS  Google Scholar 

  • Moller PCF, Rodts S, Michels MAJ, Bonn D (2008) Shear banding and yield stress in soft glassy materials. Phys Rev E 77:041507

    Article  ADS  CAS  Google Scholar 

  • Mueth DM, Debregeas GF, Karczmar GS, Eng PJ, Nagel SR, Jaeger HM (2000) Signatures of granular microstructure in dense shear flows. Nature 406:385–389

    Article  PubMed  ADS  CAS  Google Scholar 

  • Nedderman RM (1992) Statics and kinematics of granular materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Olmsted PD (2008) Perspectives on shear banding in complex fluids. Rheol Acta 47:283–300

    Article  CAS  Google Scholar 

  • Ovarlez G, Bertrand F, Rodts S (2006) Local determination of the constitutive law of a dense suspension of noncolloidal particles through MRI. J Rheol 50:259–292

    Article  ADS  CAS  Google Scholar 

  • Ovarlez G, Rodts S, Coussot P, Goyon J, Colin A (2008) Wide gap Couette flows of dense emulsions: local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Phys Rev E 78:036307

    Article  ADS  CAS  Google Scholar 

  • Partal P, Kowalski AJ, Machin D, Kiratzis N, Berni MG, Lawrence CJ (2001) Rheology and microstructural transitions in the lamellar phase of a cationic surfactant. Langmuir 17:1331–1337

    Article  CAS  Google Scholar 

  • Pignon F, Magnin A, Piau JM (1996) Thixotropic colloidal suspensions and flow curves with minimum: identification of flow regimes and rheometric consequences. J Rheol 40:573–587

    Article  ADS  CAS  Google Scholar 

  • Ragouilliaux A, Herzhaft B, Bertrand F, Coussot P (2006) Flow instability and shear localization in a drilling mud. Rheol Acta 46:261–271

    Article  CAS  Google Scholar 

  • Ragouilliaux A, Ovarlez G, Shahidzadeh-Bonn N, Herzhaft B, Palermo T, Coussot P (2007) Transition from a simple yield stress fluid to a thixotropic material. Phys Rev E 76:051408

    Article  ADS  CAS  Google Scholar 

  • Raynaud JS, Moucheront P, Baudez JC, Bertrand F, Guilbaud JP, Coussot P (2002) Direct determination by NMR of the thixotropic and yielding behavior of suspensions. J Rheol 46:709–732

    Article  ADS  CAS  Google Scholar 

  • Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions-model systems for rheological research. Mol Phys 74:933–973

    Article  ADS  CAS  Google Scholar 

  • Rice JR (1976) The localization of deformation. In: Koiter WT (ed) Theoretical and applied mechanics. North Holland, Amsterdam, pp 207–220

  • Rodts S, Bertrand F, Jarny S, Poullain P, Moucheront P (2004) Recent developments in MRI applications in rheology and fluids mechanics. CR Chimie 7:275–282

    CAS  Google Scholar 

  • Rodts S, Baudez JC, Coussot P (2005) From discrete to continuum flow in foams. Europhys Lett 69:636–642

    Article  ADS  CAS  Google Scholar 

  • Rogers SA, Vlassopoulos D, Callaghan PT (2008) Aging, yielding, and shear banding in soft colloidal glasses. Phys Rev Lett 100:128304

    Article  PubMed  ADS  CAS  Google Scholar 

  • Roussel N, Le Roy R, Coussot P (2004) Thixotropy modelling at local and macroscopic scales. J Non-Newton Fluid Mech 117:85–95

    Article  MATH  CAS  Google Scholar 

  • Roux D, Nallet F, Diat O (1993) Rheology of lyotropic lamellar phases. Europhys Lett 24:53–58

    Article  ADS  CAS  Google Scholar 

  • Salmon JB, Colin A, Roux D (2002) Dynamical behaviour of a complex fluid near an out-of-equilibrium transition: approaching simple rheological chaos. Phys Rev E 66:031505

    Article  ADS  Google Scholar 

  • Salmon JB, Manneville S, Colin A (2003) Shear-banding in a lyotropic lamellar phase, part I: time-averaged velocity profiles. Phys Rev E 68:051503

    Article  ADS  Google Scholar 

  • Schmitt V, Lequeux F, Pousse A, Roux D (1994) Flow behavior and shear-induced transition near isotropic–nematic transition in equilibrium polymers. Langmuir 10:955–961

    Article  CAS  Google Scholar 

  • Schofield MA, Wroth CP (1968) Critical state of soil mechanics. McGraw-Hill, London

    Google Scholar 

  • Sollich P, Lequeux F, Hebraud P, Cates ME (1997) Rheology of soft glassy materials. Phys Rev Lett 78:2020–2023

    Article  ADS  CAS  Google Scholar 

  • Tabor D (1991) Gases, liquids and solids, and other states or matter. Cambridge University Press, Cambridge

    Google Scholar 

  • Tanner RI (1988) Engineering rheology. Clarendon Press, Oxford

    Google Scholar 

  • Wassenius H, Callaghan PT (2005) NMR velocimetry studies of the steady-shear rheology of a concentrated hard-sphere colloidal system. Eur Phys J E 18:69–84

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Coussot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovarlez, G., Rodts, S., Chateau, X. et al. Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol Acta 48, 831–844 (2009). https://doi.org/10.1007/s00397-008-0344-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0344-6

Keywords

Navigation