Skip to main content
Log in

Viscoelastic properties of ultra-high viscosity alginates

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Ultra-high viscosity alginates were extracted from the brown seaweeds Lessonia nigrescens (UHVN, containing 61% mannuronate (M) and 2% guluronate (G)) and Lessonia trabeculata (UHVT, containing 22% M and 78% G). The viscoelastic behavior of the aqueous solutions of these alginates was determined in shear flow in terms of the shear stress σ 21, the first normal stress difference N 1, and the shear viscosity η in isotonic NaCl solutions (0.154 mol/L) at T = 298 K in dependence of the shear rate \(\dot{\gamma}\) for solutions of varying concentrations and molar masses (3–10 × 105 g/mol, homologous series was prepared by ultrasonic degradation). Data obtained in small-amplitude oscillatory shear (SAOS) experiments obey the Cox–Merz rule. For comparison, a commercial alginate with intermediate chemical composition was additionally characterized. Particulate substances which are omnipresent in most alginates influenced the determination of the material functions at low shear rates. We have calculated structure–property relationships for the prediction of the viscosity yield, e.g., ηM wc\(\dot{\gamma}\) for the Newtonian and non-Newtonian region. For the highest molar masses and concentrations, the elasticity yield in terms of N 1 could be determined. In addition, the extensional flow behavior of the alginates was measured using capillary breakup extensional rheometry. The results demonstrate that even samples with the same average molar mass but different molar mass distributions can be differentiated in contrast to shear flow or SAOS experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bazilevskii AV, Entov VM, Rozhkov AN (2001) Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym Sci Ser A 43:716–726

    Google Scholar 

  • Böhm N, Kulicke W-M (1999) Rheological studies of barley (1–3)(1–4)-beta-glucan in concentrated solution—II. Mechanistic and kinetic investigation of the gel formation. Carbohydr Res 315:293–301

    Article  Google Scholar 

  • Bouldin M, Kulicke W-M, Kehler H (1988) Prediction of the non-Newtonian viscosity and shear stability of polymer solutions. Coll Polym Sci 266:793–805

    Article  CAS  Google Scholar 

  • Castelain C, Doublier JL, Lefebvre J (1987) A study of the viscosity of cellulose derivatives in aqueous solutions. Carbohydr Polym 7:1–16

    Article  CAS  Google Scholar 

  • Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622

    Article  CAS  Google Scholar 

  • de Vos P, Faas MM, Strand B, Calafiore R (2006) Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27:5603–5617. doi:10.1016/j.biomaterials.2006.07.010

    Article  PubMed  Google Scholar 

  • Donati I, Holtan S, Morch YA, Borgogna M, Dentini M, Skjak-Brak G (2005) New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules 6:1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Non-Newton Fluid Mech 72:31–53

    Article  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  • Ferry JD, Lande1 RL, Williams ML (1955) Extension of the Rouse theory of viscoelastic properties to undiluted linear polymers. J Appl Phys 26:359–362

    Article  CAS  ADS  Google Scholar 

  • Gahleitner M, Sobczak M (1989) Significance of zero viscosity determination for the modeling of flow curves. Kunststoffe 79:1213–1216

    CAS  Google Scholar 

  • Grasdalen H, Larsen B, Smidsrød O (1979) A P.M.R. study of the composition and sequence of uronate residues in alginate. Carbohydr Res 68:23–31

    Article  CAS  Google Scholar 

  • Graessley WW (1965) Molecular entanglement theory of flow behavior in amorphous polymers. J Chem Phys 43:2696–2703

    Article  CAS  ADS  Google Scholar 

  • Graessley WW (1967) Viscosity of entangling polydisperse polymers. J Chem Phys 47:1942–1953

    Article  CAS  ADS  Google Scholar 

  • Graessley WW (1974) The entanglement concept in polymer rheology. Adv Polym Sci 16:1–179

    Article  Google Scholar 

  • Graessley WW (1980) Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight, and solvent power. Polymer 21:258–262

    Article  CAS  Google Scholar 

  • Hashemzadeh A, Kulicke WM (1986) Degradation von Polymer-molekülen beim Durchströmen poröser Medien. Chem-Ing Tech 58:325–327

    Article  CAS  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  CAS  PubMed  Google Scholar 

  • Kniewske R, Kulicke W-M (1983) Study on the molecular weight dependence of dilute properties of narrowly distributed polystyrene in toluene and in the unperturbed state. Makromol Chem 184:2173–2186

    Article  CAS  Google Scholar 

  • Kühtreiber WM, Lanza RP, Chick WL (1999) Artificial pancreas. In: Kuhtreiber WM, Lanza RP, Chick WL (eds) Encapsulated cell technology and therapeutics. Birkhäuser, Boston, pp 217–228

    Google Scholar 

  • Kulicke W-M, Clasen C (2004) Viscosimetry of polymers and polyelectrolytes. Springer, Berlin

    Google Scholar 

  • Kulicke W-M, Kniewske R (1984) The shear viscosity dependence on concentration, molecular weight, and shear rate of polystyrene solutions. Rheol Acta 23:75–83

    Article  CAS  Google Scholar 

  • Kulicke W-M, Kniewske R, Klein J (1982) Preparation, characterization, solution properties and rheological behavior of polyacrylamides. Prog Polym Sci 8:373–468

    Article  CAS  Google Scholar 

  • Kulicke WM, Kniewske R, Müller RJ, Prescher M, Kehler H (1986) Scherung und Degradation von Polymerlösungen. Angew Makromol Chem 142:29–49

    Article  CAS  Google Scholar 

  • Kulicke W-M, Otto M, Baar M (1993) Improved NMR characterization of high-molecular-weight polymers and polyelectrolytes through the use of preliminary ultrasonic degradation. Macromol Chem Phys 194:751–765

    Article  CAS  Google Scholar 

  • Kulicke W-M, Kull AH, Kull W, Thielking H, Engelhardt J, Pannek J-B (1996) Characterization of aqueous carboxymethylcellulose solutions in terms of their molecular structure and its influence on rheological behavior. Polymer 37:2723–2731

    Article  CAS  Google Scholar 

  • Kulicke W-M, Clasen C, Lohmann C (2005) Characterization of water-soluble cellulose derivatives in terms of the molar mass and particle size as well as their distribution. Macromol Symp 223:151–174

    Article  CAS  Google Scholar 

  • Lanza RP, Langer R, Vacanti J (2000) Principles of tissue engineering, 2nd edn. Academic, San Diego

    Google Scholar 

  • Li L, Fang Y, Vreeker R, Appelqvist I, Mendes E (2007) Reexamining the egg-box model in calcium-alginate gels with X-ray diffraction. Biomacromolecules 8:464–468

    Article  CAS  PubMed  Google Scholar 

  • Liew CV, Chan LW, Ching AL, Heng PWS (2006) Evaluation of sodium alginate as drug release modifier in matrix tablets. Int J Pharm 309:25–37

    Article  CAS  PubMed  Google Scholar 

  • Manz B, Hillgärtner M, Zimmermann H, Zimmermann D, Volke F, Zimmermann U (2004) Cross-linking properties of alginate gels determined by using advanced NMR imaging and Cu2+ as contrast agent. Eur Biophys J 33:50

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Mashiko K (1990) Viscoelastic properties of alginate aqueous-solutions in the presence of salts. Biopolymers 29:1707–1713

    Article  CAS  Google Scholar 

  • Matsumoto T, Kawai M, Masuda T (1992) Influence of chain stiffness on the gelation and gel structure of alginate aqueous systems. Chem Soc Farad Trans 18:2673–2676

    Article  Google Scholar 

  • Morris ER, Rees DA, Thom DJ (1973) Characterization of polysaccharide structure and interactions by circular dichroism. Order-disorder transition in the calcium alginate system. Chem Soc Chem Comm 7:245–246

    Article  Google Scholar 

  • Morris ER, Rees DA, Thom D, Boyd J (1978) Chiroptical and stoichiometric evidence of a specific, primary dimerization process in alginate gelation. Carbohydr Res 66:145–154

    Article  CAS  Google Scholar 

  • Oertel R, Kulicke W-M (1991) Viscoelastic properties of liquid crystals of aqueous biopolymer solutions. Rheol Acta 30:140–150

    Article  CAS  Google Scholar 

  • Plog JP, Clasen C, Kulicke W-M (2005) Influence of the molar mass distribution on the elongational behavior of polymer solutions in capillary breakup. Appl Rheol 15:28–37

    CAS  Google Scholar 

  • Rouse PE (1953) A Theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21:1272–1280. doi:10.1063/1.1699180

    Article  CAS  ADS  Google Scholar 

  • Schittenhelm N, Kulicke W-M (2000) Producing homologous series of molar masses for establishing structure–property relationships with the aid of ultrasonic degradation. Macromol Chem Phys 201:1976–1984

    Article  CAS  Google Scholar 

  • Simha R, Zakin JL (1962) Solution viscosities of linear, flexible, high polymers. J Colloid Sci 17:270

    Article  CAS  Google Scholar 

  • Smidsrød O, Haug A, Lian B (1972) Properties of poly(1,4-hexuronates) in the gel state. Acta Chem Scand 26:71–78

    Article  Google Scholar 

  • Stelter M, Brenn B, Yarin AL, Singh RP, Durst F (2002) Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer. J Rheol 46:507–527

    Article  CAS  ADS  Google Scholar 

  • Storz H, Müller K, Ehrhart F, Gómez I, Shirley SG, Gessner P, Zimmermann G, Weyand E, Sukhorukov VL, Forst T, Weber MM, Zimmermann H, Kulicke W-M, Zimmermann U (2009) Physicochemical features of ultra-high viscosity alginates. Carbohydr Res 344:985–995. doi:10.1016/j.carres.2009.02.016

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Yoshinobo I, Noda IN (1985) Zero-shear viscosity of linear polymer solutions over a wide range of concentration. Macromolecules 18:1002–1008

    Article  CAS  ADS  Google Scholar 

  • Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630

    Article  PubMed  Google Scholar 

  • Vermeulen H, Ubbink DT, Goossens A, de Vos R, Legemate DA (2005) Systematic review of dressings and topical agents for surgical wounds healing by secondary intention. Br J Surg 92:665–672

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Zhang QZ, Konno M, Saito S (1994) Sol–gel transition of alginate solution by the addition of various divalent cations: a rheological study. Biopolymers 34:737–746

    Article  CAS  Google Scholar 

  • Weber M, Steinert A, Jork A, Dimmler A, Schütze N, Thürmer F, Hendrich C, Zimmermann U (2002) Formation of cartilage matrix proteins by BMP-transfected murine mesenchymal stem cells encapsulated in a novel class of alginates. Biomaterials 23:2001–2013

    Google Scholar 

  • Yasuda K, Armstrong RC, Cohen RE (1981) Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol Acta 20:163–178

    Article  CAS  Google Scholar 

  • Zekorn TD, Horcher A, Siebers U, Fedewrlin K, Bretzel RG (1999) Synergistic effect of microencapsulation and immunoalteration on islet allograft survival in bioartificial pancreas. J Mol Med 77:193–198

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann U, Mimietz S, Zimmermann H, Hillgärtner M, Schneider H, Ludwig J, Hasse C, Hasse A, Rothmund M, Fuhr G (2000) Hydrogel-based non-autologous cell and tissue therapy. Biotechniques 29:564–581

    CAS  PubMed  Google Scholar 

  • Zimmermann H, Zimmermann D, Reuss R, Feilen PJ, Manz B, Katsen A, Weber M, Ihmig FR, Ehrhart F, Gessner P, Behringer M, Steinbach A, Wegner LH, Sukhorukov VL, Vasquez JA, Schneider S, Weber MM, Volke F, Wolf R, Zimmermann U (2005) Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. Mater Sci Mater Med 16:491–501

    Article  CAS  Google Scholar 

  • Zimmermann H, Wählisch F, Baier C, Westhoff M, Reuss R, Zimmermann D, Behringer M, Ehrhart F, Katsen-Globa A, Giese C, Marx U, Sukhorukov VL, Vásquez JA, Jakob P, Shirley SG, Zimmermann U (2007b) Biomaterials 28:1327–1345. doi:10.1016/j.biomaterials.2006.11.032

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H, Ehrhart F, Zimmermann D, Muller K, Katsen-Globa A, Behringer M, Feilen PJ, Gessner P, Zimmermann G, Shirley SG, Weber MM, Metze J, Zimmermann U (2007c) Hydrogel-based encapsulation of biological, functional tissue: fundamentals, technologies and applications. Appl Phys A 89:909–922

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We are very grateful to F. Bauer for the performance of the encapsulation experiments. This work was supported by grants of the Bundesministerium für Wirtschaft und Technologie (AIF KF0054-702WZ7) awarded to U. Z. and of the Bundesministerium für Bildung und Forschung (PTJ μAirjet 0313680B) awarded to H.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner-Michael Kulicke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storz, H., Zimmermann, U., Zimmermann, H. et al. Viscoelastic properties of ultra-high viscosity alginates. Rheol Acta 49, 155–167 (2010). https://doi.org/10.1007/s00397-009-0400-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0400-x

Keywords

Navigation