Skip to main content
Log in

A double wall-ring geometry for interfacial shear rheometry

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheological properties of complex fluid interfaces are of prime importance in a number of technological and biological applications. Whereas several methods have been proposed to measure the surface rheological properties, it remains an intrinsically challenging problem due to the small forces and torques involved and due to the intricate coupling between interfacial and bulk flows. In the present work, a double wall-ring geometry to measure the viscoelastic properties of interfaces in shear flows is presented. The geometry can be used in combination with a modern rotational rheometer. A numerical analysis of the flow field as a function of the surface viscoelastic properties is presented to evaluate the non-linearities in the surface velocity profile at a low Boussinesq number. The sensitivity of the geometry, as well as its applicability, are demonstrated using some reference Newtonian and viscoelastic fluids. Oscillatory and steady shear measurements on these reference complex fluid interfaces demonstrate the intrinsic sensitivity, the accuracy, and the dynamic range of the geometry when used in combination with a sensitive rheometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alonso C, Alig T, Yoon J, Bringezu F, Warriner H, Zasadzinksi JA (2004) More than a monolayer: relating lung surfactant structure and mechanics to composition. Biophys J 87:4188–4202

    Article  CAS  PubMed  Google Scholar 

  • Alonso C, Waring A, Zasadzinski JA (2005) Keeping lung surfactant where it belongs: protein regulation of two-dimensional viscosity. Biophys J 89:266–273

    Article  CAS  PubMed  Google Scholar 

  • Anseth JW, Goffin AJ, Fuller GG, Ghio AJ, Kao PN, Upadhyay D (2005) Lung surfactant gelation induced by epithelial cells exposed to air pollution or oxidative stress. Am J Respir Cell Mol Biol 33:161–168

    Article  CAS  PubMed  Google Scholar 

  • Brenner H, Leal LG (1978) A micromechanical derivation of Fick’s law for interfacial diffusion of surfactant molecules. J Colloid Interface Sci 65:191–209

    Article  CAS  Google Scholar 

  • Brenner H, Leal LG (1982) Conservation and constitutive equations for adsorbed species undergoing surface diffusion and convection at a fluid-fluid interface. J Colloid Interface Sci 88:136–184

    Article  CAS  Google Scholar 

  • Brooks CF (1999) An interfacial stress rheometer to study the shear rheology of Langmuir monolayers. PhD Thesis, Stanford University

  • Brooks CF, Fuller GG, Frank CW, Robertson CR (1999) An interfacial stress rheometer to study rheological transitions in monolayers at the water–air interface. Langmuir 15:2450–2458

    Article  CAS  Google Scholar 

  • Brown AG, Thuman WC, McBain JW (1953) The surface viscosity of detergent solutions as a factor in foam stability. J Colloid Sci 8:491–507

    Article  CAS  Google Scholar 

  • Clark DC, Wilde PJ, Wilson DR, Wüstneck R (1992) The interaction of sucrose esters with β-lactoglobulin and β-casein from bovine milk. Food Hydrocoll 6:173–186

    Article  CAS  Google Scholar 

  • Clements JA, Avery ME (1998) Lung surfactant and neonatal respiratory distress syndrome. Am J Respir Crit Care Med 157:59–66

    Google Scholar 

  • Deemer AR, Slattery JC (1978) Balance equations and structural models for phase interfaces. Int J Multiph Flow 4:171–192

    Article  CAS  MATH  Google Scholar 

  • Dickinson E, Hunt JA, Dalgleish DG (1991) Competitive adsorption of phosvitin with milk proteins in oil-in-water emulsions. Food Hydrocoll 4:403–414

    Article  CAS  Google Scholar 

  • Dickinson E, Owusu RK, Sze T, Williams A (1993) Oil-soluble surfactants have little effect on competitive adsorption of α-lactalbumin and β-lactoglobulin in emulsions. J Food Sci 58:295–298

    Article  CAS  Google Scholar 

  • Dorshow RB, Swofford RL (1989) Application of surface laser-light scattering spectroscopy to the photoabsorbing systems: the measurement of interfacial tension and viscosity in crude oil. J Appl Phys 65:3756–3759

    Article  CAS  ADS  Google Scholar 

  • Edwards DA, Brenner H, Wasan DT (1991) Interfacial transport processes and rheology. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Eisenschitz R, Rabinowitch B, Weissenberg K (1929) Zur Analyse des Formveränderungswiderstandes. Mitt Dsch Mat-Prüf-Anst Sonderheft 9:91

    Google Scholar 

  • Erni P, Fischer P, Windhab EJ, Kusnezov V, Stettin H, Läuger J (2003) Stress- and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces. Rev Sci Instrum 74:4916–4924

    Article  CAS  ADS  Google Scholar 

  • Erni P, Fischer P, Heyer P, Windhab EJ, Kusnezov V, Läuger J (2004) Rheology of gas/liquid and liquid/liquid interfaces with aqueous and biopolymer subphases. Prog Colloid & Polym Sci 129:16–23

    CAS  Google Scholar 

  • Fuller GG, Aloyse F, Vermant J (2009) System and method for interfacial rheometry. US Patent 20090056423

  • Ghaskadvi RS, Ketterson JB, MacDonald RC, Dutta P (1997) Apparatus to measure the shear modulus of Langmuir monolayers as functions of strain amplitude and frequency. Rev Sci Instrum 68:1792–1795

    Article  CAS  ADS  Google Scholar 

  • Ghaskadvi RS, Dennin M (1998) A two-dimensional Couette viscometer for Langmuir monolayers. Rev Sci Instrum 69:3568–3572

    Article  CAS  ADS  Google Scholar 

  • Georgieva D, Cagna A, Langevin D (2009) Link between surface elasticity and foam stability. Soft Matter 5:2063–2071

    Article  CAS  Google Scholar 

  • Krägel J, Derkatch SR, Miller R (2008) Interfacial shear rheology of protein-surfactant layers. Adv Colloid Interface Sci 144:38–53

    Article  PubMed  Google Scholar 

  • Miller R, Wüstneck R, Krägel J, Kretzschmar G (1996) Dilatational and shear rheology of adsorption layers at liquid interfaces. Colloids Surf, A Physicochem Eng Asp 111:75–118

    Article  CAS  Google Scholar 

  • Oh SG, Slattery JC (1978) Disk and biconal interfacial viscometers. J Colloid Interface Sci 67:516–525

    Article  CAS  Google Scholar 

  • Olson JO, Fuller GG (2000) Contraction and expansion flows of Langmuir monolayers. J Non-Newton Fluid Mech 89:187–207

    Article  CAS  Google Scholar 

  • Prasad V, Koehler SA, Weeks ER (2006) Two-particle microrheology of quasi-2D viscous systems. Phys Rev Lett 97:176001

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rabinowitch B (1929) Über die Viskosität und Elastizität von Solen. Zeitschrift für physikalische Chemie 145:1–26

    Google Scholar 

  • Ray YC, Lee HO, Jiang TL, Jiang TS (1986) Oscillatory torsional interfacial viscometer. J Colloid Interface Sci 119:81–99

    Article  Google Scholar 

  • Reynaert S, Brooks CF, Moldenaers P, Vermant J, Fuller GG (2008) Analysis of the magnetic rod interfacial stress rheometer. J Rheol 52:261–285

    Article  CAS  ADS  Google Scholar 

  • Saffman PG, Delbrück M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113

    Article  CAS  PubMed  ADS  Google Scholar 

  • Scriven LE (1960) Dynamics of a fluid interface. Chem Eng Sci 12:98–108

    Article  CAS  Google Scholar 

  • Shahin GT (1968) The stress deformation interfacial rheometer. PhD Thesis, University of Pennsylvania

  • Sickert M, Rondelez F (2003) Shear viscosity of Langmuir monolayers in the low-density limit. Phys Rev Lett 90:126104

    Article  PubMed  ADS  Google Scholar 

  • Slattery JC (1964) Surfaces. I. Momentum and moment-of-momentum balances for moving surfaces. Chem Eng Sci 19:379–385

    Article  CAS  MathSciNet  Google Scholar 

  • Slattery JC (1990) Interfacial transport phenomena. Springer, New York

    Google Scholar 

  • Stone HA, Ajdari A (1998) Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. J Fluid Mech 369:151–173

    CAS  ADS  MATH  Google Scholar 

  • Ueno M, Samura K, Fukuda K, Takeo N, Takei T, Takahashi A, Fujiwara T, Asano H (1993) Surface rheological properties of the monolayer of synthetic lung surfactant. Colloids Surf, B Biointerfaces 1:221–232

    Article  CAS  Google Scholar 

  • Van Gurp M, Palmen J (1998) Time-temperature superposition for polymeric blends. Rheol Bull 67:5–8

    Google Scholar 

  • Weissenberg K (1929) Mitt-Staatl Material p Asst Sonderheft V

  • Wilde PJ, Clark DC (1993) The competitive displacement of β-lactoglobulin by Tween-20 at the oil–water interface. J Colloid Interface Sci 155:48–54

    Article  CAS  Google Scholar 

  • Wu J, Dai LL (2007) Apparent microrheology of oil-water interfaces by single-particle tracking. Langmuir 23:4324–4331

    Article  CAS  PubMed  Google Scholar 

  • Zasadzinski JA, Ding J, Warriner HE, Bringezu F, Waring AJ (2001) The physics and physiology of lung surfactants. Curr Opin Colloid Interface Sci 6:506–513

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Bijzonder onderzoeksfonds K.U.Leuven (GOA/09/002) and also acknowledge support of the EU through FP7, project Nanodirect NMP4-SL-2008-213948. Kasper Masschaele is acknowledged for his help in obtaining the results on the PODMA interfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Vermant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandebril, S., Franck, A., Fuller, G.G. et al. A double wall-ring geometry for interfacial shear rheometry. Rheol Acta 49, 131–144 (2010). https://doi.org/10.1007/s00397-009-0407-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0407-3

Keywords

Navigation