Skip to main content
Log in

Extensional rheology of dilute polymer solutions in oscillatory cross-slot flow: the transient behaviour of birefringent strands

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Birefringent strands are key to understanding polymeric non-Newtonian flows, especially in extension. Utilising microfluidic extensional flow oscillatory rheometry coupled with microvelocimetry (μ-PIV), we report experiments on the genesis, steady state and decay of such strands, together with rheological consequences. For closely monodisperse atactic polystyrene, we report massive effects of the polymer on flow even at low concentrations. The often observed startup “overshoot” in stress and birefringence is observed at unprecedented dilution and discussed in terms of the local strain rate. Strand decay shows pronounced hysteresis. These factors are most important in modelling real flows such as cyclic and capillary entrance flows. Even with the closely monodisperse and well-characterised samples used, residual polydispersity plays a vital role in flow behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arratia PE, Thomas CC, Diorio J, Gollub JP (2006) Phys Rev Lett 96:144502

    Article  CAS  PubMed  ADS  Google Scholar 

  • Batchelor GK (1970) Slender-body theory for particles of arbitrary cross-section in Stokes flow. J Fluid Mech 44:419–440

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Carrington SP, Odell JA (1996) How do polymers stretch in stagnation point extensional flow-fields? J Non-Newton Fluid Mech 67:269–283

    Article  CAS  Google Scholar 

  • Carrington SP, Tatham JP Odell JA, Saez AE (1997a) Macromolecular dynamics in extensional flows: 1. Birefringence and viscometry. Polymer 38:4151–4164

    Article  CAS  Google Scholar 

  • Carrington SP, Tatham JP Odell JA, Saez AE (1997b) Macromolecular dynamics in extensional flows: 2. The evolution of molecular strain. Polymer 38:4595–4607

    Article  CAS  Google Scholar 

  • Chilcott MD, Rallison JM (1988) Creeping flow of dilute polymer solutions past cylinders and spheres. J Non-Newton Fluid Mech 29:381–432

    Article  MATH  CAS  Google Scholar 

  • Cressely R, Hocquart R (1980) Biréfringence d’écoulement localisée iduite à l’arrière d’obstacles. Opt Acta 27:699–711

    CAS  ADS  Google Scholar 

  • Cressely R, Hocquart R (1981) Extension and relaxation of high macromolecules in oscillatory elongational flow using flow birefringence. Polymer Prepr 22:120–121

    CAS  Google Scholar 

  • De Gennes PG (1974) Coil–stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J Chem Phys 60:5030–5042

    Article  ADS  Google Scholar 

  • Dyakonova NE, Odell JA, Brestkin YV, Lyulin AV, Saez AE (1996) Macromolecular strain in periodic models of porous media flows. J Non-Newton Fluid Mech 67:285–310

    Article  CAS  Google Scholar 

  • Frank FC, Keller A, Mackley MR (1971) Polymer chain extension produced by impinging jets and its effect on polyethylene solution. Polymer 12:467–473

    Article  CAS  Google Scholar 

  • Gardner K, Pike ER, Miles MJ, Keller A, Tanaka K (1982) Photon-correlation velocimetry of polystyrene solutions in extensional flow fields. Polymer 23:1435–1442

    Article  CAS  Google Scholar 

  • Geffroy E, Leal LG (1992) Flow birefringence studies of a concentrated polystyrene solution in a two-roll mill. 1. Steady flow and startup of steady flow. J Polym Sci Part B Polym Phys 30:1329–1349

    Article  CAS  ADS  Google Scholar 

  • Graessley WW (1980) Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer 21:258–262

    Article  CAS  Google Scholar 

  • Gupta RK, Nguyen DA, Sridhar T (2000) Extensional viscosity of dilute polystyrene solutions: effect of concentration and molecular weight. Phys Fluids 12:1296–1318

    Article  MATH  ADS  Google Scholar 

  • Harisson G, Remmelgas J, Leal LG (1998) The dynamics of ultradilute polymer solutions in transient flows: comparison of dumbbell-based theory and experiments. J Rheol 42:1039–1058

    Article  ADS  Google Scholar 

  • Harisson G, Remmelgas J, Leal LG (1999) Comparison of dumbbell-based theory and experiment for a dilute polymer solution in a corotating two-roll mill. J Rheol 43:197–218

    Article  ADS  Google Scholar 

  • Harlen OG, Hinch EJ, Rallison JM (1992) Birefringent pipes: the steady flow of a dilute polymer solution near a stagnation point. J Non-Newton Fluid Mech 44:229–265

    Article  MATH  CAS  Google Scholar 

  • Hinch EJ (1974) Mechanical models of dilute polymer solutions for strong flows with large polymer deformations. Polymeres et Lubrification, Colloques Internationaux du CNRS 233:241–247

    Google Scholar 

  • Hsieh C-C, Larson RG (2004) Modeling hydrodynamic interaction in Brownian dynamics: simulations of extensional and shear flows of dilute solutions of high molecular weight polystyrene. J Rheol 48:995–1021

    Article  CAS  ADS  Google Scholar 

  • Larson RG, Magda JJ (1989) Coil–stretch transitions in mixed shear and extensional flows of dilute polymer solutions. Macromolecules 22:3004–3010

    Article  CAS  ADS  Google Scholar 

  • Li L, Larson RG, Sridhar T (2000) Brownian dynamics simulations of dilute polystyrene solutions. J Rheol 44:291–322

    Article  CAS  ADS  Google Scholar 

  • Marshall RJ, Metzner AB (1967) Flow of viscoelastic fluids through porous media. Ind Eng Chem Fundam 6:393–400

    Article  CAS  Google Scholar 

  • Miles MJ, Keller A (1980) Conformational relaxation time in polymer solutions by elongational flow experiments 2. Preliminaries of further developments: chain retraction; identification of molecular weight fractions in a mixture. Polymer 21:1295–1298

    Article  CAS  Google Scholar 

  • Odell JA, Carrington SP (2006) Extensional flow oscillatory rheometry. J Non-Newton Fluid Mech 137:110–120

    Article  CAS  Google Scholar 

  • Perkins TT, Smith DE, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276:2016–2021

    Article  CAS  PubMed  Google Scholar 

  • Pipe CJ, McKinley GH (2009) Microfluidic rheometry. Mech Res Commun 36:110–120

    Article  Google Scholar 

  • Poole RJ, Alves MA, Oliveira PJ (2007) Purely elastic flow asymmetries. Phys Rev Lett 99:164503

    Article  CAS  PubMed  ADS  Google Scholar 

  • Remmelgas J, Singh P, Leal LG (1999) Computational studies of nonlinear elastic dumbbell models of Boger fluids in a cross-slot flow. J Non-Newton Fluid Mech 88:31–61

    Article  MATH  CAS  Google Scholar 

  • Schroeder CM, Babcock HP, Shaqfeh ESG, Chu S (2003) Observation of polymer conformation hysteresis in extensional flow. Science 301:1515–1519

    Article  CAS  PubMed  ADS  Google Scholar 

  • Scrivener O, Berner C, Cressely R, Hocquart R, Sellin R, Vlachos NS (1979) Dynamical behaviour of drag-reducing polymer solutions. J Non-Newton Fluid Mech 5:475–495

    Article  CAS  Google Scholar 

  • Smith DE, Chu S (1998) Response of flexible polymers to sudden elongational flow. Science 281:1335–1340

    Article  CAS  PubMed  ADS  Google Scholar 

  • Treloar LKG (1975) The physics of rubber elasticity, 3rd edn. Clarendon, Oxford

    Google Scholar 

  • Wang JJ, Yavich D, Leal LG (1994) Time-resolved velocity gradient and optical anisotropy in linear flow by photon correlation spectroscopy. Phys Fluids 6:3519–3534

    Article  CAS  ADS  Google Scholar 

  • Zimm BH (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J Chem Phys 24:269–278

    Article  CAS  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the support of the Engineering and Physical Sciences Research Council (EPSRC) of the U.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Haward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haward, S.J., Odell, J.A., Li, Z. et al. Extensional rheology of dilute polymer solutions in oscillatory cross-slot flow: the transient behaviour of birefringent strands. Rheol Acta 49, 633–645 (2010). https://doi.org/10.1007/s00397-009-0420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0420-6

Keywords

Navigation