Skip to main content
Log in

Interfacially active particles in droplet/matrix blends of model immiscible homopolymers: Particles can increase or decrease drop size

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Particles have been shown to adsorb at the interface between immiscible homopolymer melts and to affect the morphology of blends of those homopolymers. We examined the effect of such interfacially active particles on the morphology of droplet/matrix blends of model immiscible homopolymers. Experiments were conducted on blends of polydimethylsiloxane and 1,4-polyisoprene blended in either a 20:80 or 80:20 weight ratio. The effects of three different particle types, fluoropolymer particles, iron particles, and iron oxyhydroxide particles, all at a loading of 0.5 vol.%, were examined by rheology and by direct flow visualization. Particles were found to significantly affect the strain recovery behavior of polymer blends, increasing or decreasing the ultimate recovery, slowing down or accelerating the recovery kinetics, and changing the dependence of these parameters on the applied stress prior to cessation of shear. These rheological observations were found to correlate reasonably well with particle-induced changes in drop size. The particles can both increase as well as decrease the drop size, depending on the particle type, as well as on which phase is continuous. The cases in which particles cause a decrease in drop size are analogous to the particle stabilization of “Pickering emulsions” well-known from the literature on oil/water systems. We hypothesize that cases in which particles increase drop size are analogous to the “bridging–dewetting” mechanism known in the aqueous foam literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ashby NP, Binks BP, Paunov VN (2004) Bridging interaction between a water drop stabilised by solid particles and a planar oil/water interface. Chem Comm (4): 436–437

  • Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7:21–41

    Article  CAS  Google Scholar 

  • Binks BP, Horozov TS (2006) Colloidal particles at liquid interfaces. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cheng HL, Velankar SS (2008) Film climbing of particle-laden interfaces. Colloid Surf A 315:275–284

    Article  CAS  Google Scholar 

  • Cheng HL, Velankar SS (2009) Interfacial jamming of particle-laden interfaces studied in a spinning drop tensiometer. Langmuir 25:4412–4420

    Article  CAS  PubMed  Google Scholar 

  • Datta S, Lohse DJ (1996) Polymeric compatibilizers. Hanser, Munich

    Google Scholar 

  • Denkov ND, Marinova KG (2006) Antifoam effects of solid particles, oil drops, and oil-solid compounds in aqueous foams. In: Binks BP, Horozov TS (eds) Colloidal particles at liquid interfaces. Cambridge University Press, Cambridge

    Google Scholar 

  • Dickinson E (2006) Interfacial particles in food emulsions and foams. In: Binks BP, Horozov TS (eds) Colloidal particles at liquid interfaces. Cambridge University Press, Cambridge

    Google Scholar 

  • Elias L, Fenouillot F, Majeste JC, Cassagnau P (2007) Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 48:6029–6040

    Article  CAS  Google Scholar 

  • Elias L, Fenouillot F, Majeste JC, Martin G, Cassagnau P (2008) Migration of nanosilica particles in polymer blends. J Polym Sci Polym Phys 46:1976–1983. doi:10.1002/polb.21534

    Article  CAS  Google Scholar 

  • Fenouillot F, Cassagnau P, Majeste JC (2009) Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends. Polymer 50:1333–1350. doi:10.1016/j.polymer.2008.12.029

    Article  CAS  Google Scholar 

  • Garrett PR (1993) Mode of action of antifoams. In: Garrett PR (ed) Defoaming. Marcel Dekker, New York

    Google Scholar 

  • Graebling D, Muller R, Palierne JF (1993) Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 26:320–329

    CAS  Google Scholar 

  • Gramespacher H, Meissner J (1995) Reversal of recovery direction during creep recovery of polymer blends. J Rheol 39:151–160

    Article  CAS  ADS  Google Scholar 

  • Gubbels F, Jerome R, Teyssie P, Vanlathem E, Deltour R, Calderone A, Parente V, Bredas JL (1994) Selective localization of carbon-black in immiscible polymer blends—a useful tool to design electrical conductive composites. Macromolecules 27:1972–1974

    Article  CAS  ADS  Google Scholar 

  • Hong JS, Namkung H, Ahn KH, Lee SJ, Kim C (2006) The role of organically modified layered silicate in the breakup and coalescence of droplets in PBT/PE blends. Polymer 47:3967–3975

    Article  CAS  Google Scholar 

  • Horozov TS, Binks BP (2006) Particle-stabilized emulsions: a bilayer or a bridging monolayer? Angew Chemie Int Ed 45:773–776

    Article  CAS  Google Scholar 

  • Kitade S, Ichikawa A, Imura N, Takahashi Y, Noda I (1997) Rheological properties and domain structures of immiscible polymer blends under steady and oscillatory shear flows. J Rheol 41:1039–1060

    Article  CAS  ADS  Google Scholar 

  • Kosaric N, Cairns WL, Gray NCC (1987) Microbial deemulsifiers. In: Kosaric N, Cairns WL, Gray NCC (eds) Biosurfactants and biotechnology, vol 25. Marcel Dekker, New York, pp 247–321

    Google Scholar 

  • Macosko CW, Guegan P, Khandpur AK, Nakayama A, Marechal P, Inoue T (1996) Compatibilizers for melt blending: premade block copolymers. Macromolecules 29:5590–5598

    Article  CAS  ADS  Google Scholar 

  • Martin JD (2007) The efof surface-active block copolymers on two-phase flow. PhD thesis, Chemical Engineering, University of Pittsburgh, Pittsburgh

  • Martin JD, Velankar SS (2007) Effects of compatibilizer on immiscible polymer blends near phase inversion. J Rheol 51:669–692

    Article  CAS  ADS  Google Scholar 

  • Milner ST, Xi H (1996) How copolymers promote mixing of immiscible homopolymers. J Rheol 40:663–687

    Article  CAS  ADS  Google Scholar 

  • Mizrahi J, Barnea E (1970) Effects of solid additives on the formation and separation of emulsions. Br Chem Eng 15:497–503

    CAS  Google Scholar 

  • Pugh RJ (1996) Foaming, foam films, antifoaming and defoaming. Adv Colloid Interface Sci 64:67–142

    Article  CAS  Google Scholar 

  • Ray SS, Pouliot S, Bousmina M, Utracki LA (2004) Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer 45:8403–8413

    Article  CAS  Google Scholar 

  • Si M, Araki T, Ade H, Kilcoyne ALD, Fisher R, Sokolov JC, Rafailovich MH (2006) Compatibilizing bulk polymer blends by using organoclays. Macromolecules 39:4793–4801

    Article  CAS  ADS  Google Scholar 

  • Stancik EJ, Fuller GG (2004) Connect the drops: using solids as adhesives for liquids. Langmuir 20:4805–4808

    Article  CAS  PubMed  Google Scholar 

  • Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polymer Bull 25:266–271

    Article  Google Scholar 

  • Thareja P (2008) Study of particles at fluid/fluid interfaces. PhD Thesis, Chemical Engineering, University of Pittsburgh, Pittsburgh

  • Thareja P, Velankar SS (2007) Particle-induced bridging in immiscible polymer blends. Rheol Acta 46:405–412

    Article  CAS  Google Scholar 

  • Thareja P, Velankar S (2008a) Rheology of immiscible blends with particle-induced drop clusters. Rheol Acta 47:189–200

    Article  CAS  Google Scholar 

  • Thareja P, Velankar SS (2008b) Interfacial activity of particles at PI/PDMS and PI/PIB interfaces: analysis based on Girifalco-Good theory. Colloid Polym Sci 286:1257–1264

    Article  CAS  Google Scholar 

  • Tucker CL, Moldenaers P (2002) Microstructural evolution in polymer blends. Ann Rev Fluid Mech 34:177–210

    Article  MathSciNet  ADS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed  Google Scholar 

  • Van Puyvelde P, Velankar S, Moldenaers P (2001) Rheology and morphology of compatibilized polymer blends. Curr Opin Colloid Interface Sci 6:457–463

    Article  Google Scholar 

  • Vermant J, Cioccolo G, Nair KG, Moldenaers P (2004) Coalescence suppression in model immiscible polymer blends by nano-sized colloidal particles. Rheol Acta 43:529–538

    Article  CAS  Google Scholar 

  • Vinckier I, Mewis J, Moldenaers P (1996) Relationship between rheology and morphology of model blends in steady shear flow. J Rheol 40:613–632

    Article  CAS  ADS  Google Scholar 

  • Vinckier I, Moldenaers P, Mewis J (1999) Elastic recovery of immiscible blends 1. Analysis after steady state shear flow. Rheol Acta 38:65–72

    Article  CAS  Google Scholar 

  • Wang J, Velankar S (2006a) Strain recovery of model immiscible blends without compatibilizer. Rheol Acta 45:297-304

    Article  CAS  Google Scholar 

  • Wang J, Velankar S (2006b) Strain recovery of model immiscible blends: effects of added compatibilizer. Rheol Acta 45:741–753

    Article  CAS  Google Scholar 

  • Zaikin AE, Zharinova EA, Bikmullin RS (2007) Specifics of localization of carbon black at the interface between polymeric phases. Polym Sci, Ser A 49:328–336

    Article  Google Scholar 

Download references

Acknowledgements

We thank Rhodia Silicones and Kuraray America for providing the PDMS and PI homopolymers, respectively. We are grateful to Elementis Inc., Dyneon Corp., and Prof. Phule (University of Pittsburgh) for making particles available for this research. This research was supported by a CAREER grant CBET- 0448845 from the National Science Foundation, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin S. Velankar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thareja, P., Moritz, K. & Velankar, S.S. Interfacially active particles in droplet/matrix blends of model immiscible homopolymers: Particles can increase or decrease drop size. Rheol Acta 49, 285–298 (2010). https://doi.org/10.1007/s00397-009-0421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0421-5

Keywords

Navigation