Skip to main content
Log in

Measurement technique and data analysis of extensional viscosity for polymer melts by Sentmanat extensional rheometer (SER)

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Transient extensional viscosity of low-density polyethylene was measured by Sentmanat extensional rheometer in combination with MCR301 rheometer (Anton Paar) at different temperatures. Issues related to the experimental procedure, namely fixing the sample and controlling the temperature, as well as correction for true sample dimensions in calculation of extensional viscosity of polymer melts, were discussed. The molecular stress function model was used to describe the experimental data. The results were in accordance with other test methods and theoretical description when the measurements were done without using the sample fixing clamps, careful temperature control was followed, and the experimental data were corrected for sample dimensions affected by thermal expansion and pre-stretching at the beginning of the test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baldi F, Franceschini A, Riccò T (2007) Determination of the elongational viscosity of polymers melts by melt spinning experiments, a comparison with different experimental techniques. Rheol Acta 46:965–978

    Article  CAS  Google Scholar 

  • Bastian H (2001) Non-linear viscoelasticity of linear and long-chain-branched polymer melts in shear and extensional flows. PhD Thesis, Institut für Kunststofftechnologie, University of Stuttgart

  • Bernnat A (2001) Polymer melt rheology and rheotens test. PhD thesis, Institut für Kunststofftechnologie, University of Stuttgart

  • Cadmould 3D-F (2009) V3.0.0.382 material database. Simcon kunststofftechnische Software GmbH, Germany

  • Dealy JM, Larson RG (2006) Structure and rheology of molten polymers—from structure to flow behaviour and back again. Carl Hanser, Munich, ISBN-10:1-56990-381-6, pp 392–399

  • Delgadillo-Velazquez O, Hatzikiriakos SG, Sentmanat M (2008) Thermorheological properties of LLDPE/LDPE blends. Rheol Acta 47:19–31

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Part 2—molecular motion under flow. J Chem Soc Faraday Trans 2(74):1802–1817

    Google Scholar 

  • Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems. Part 4—rheological properties. J Chem Soc Faraday Trans 2(75):38–54

    Google Scholar 

  • Férec J, Heuzeuy M-C, Pérez-González J, deVargas L, Ausias G, Carreau PJ (2009) Investigation of the rheological properties of short glass fiber-filled polypropylene in extensional flow. Rheol Acta 48:59–72

    Article  Google Scholar 

  • Fernández San Martin M (2009) University of the Basque Country, Spain. Personal communication

  • Garofalo E, Russo GM, Scarfato P, Incarnato L (2009) Nanostructural modifications of polyamide/MMT hybrids under isothermal and non-isothermal elongational flow. J Polym Sci Part B Polym Phys 47:981–993

    Article  CAS  ADS  Google Scholar 

  • Gotsis AD, Zeevenhoven BLF, Tsenoglou C (2004) Effect of long branches on the rheology of polypropylene. J Rheol 48:895–914

    Article  CAS  ADS  Google Scholar 

  • Gubler MG, Kovacs AJ (1959) La Structure du polyéthylène consideré comme un mélange de n-paraffines. J Polym Sci 34:551–568

    Article  CAS  Google Scholar 

  • Hadinata C, Boos D, Gabriel C, Wassner E, Rüllmann M, Kao N, Laun M (2007) Elongation-induced crystallization of a high molecular weight isotactic polybutene-1 melt compared to shear induced crystallization. J Rheol 51(2):195–215

    Article  CAS  ADS  Google Scholar 

  • Lyhne A, Rasmussen HK, Hassager O (2009) Simulation of elastic rupture in extension of entangled monodisperse polymer melts. Phys Rev Lett. doi:138301

    Google Scholar 

  • Maia JM, Covas JA, Nóbrega JM, Dias TF, Alves FE (1999) Measuring uniaxial extensional viscosity using a modified rotational rheometer. J Non-Newton Fluid Mech 80:183–197

    Article  MATH  CAS  Google Scholar 

  • Marrucci G, Hermans JJ (1980) Nonlinear viscoelasticity of concentrated polymer liquids. Macromolecules 13:380–387

    Article  CAS  ADS  Google Scholar 

  • McKinley GH, Sridhar T (2002) Filament-stretching rheometry of complex fluids. Annu Rev Fluid Mech 34:375–415

    Article  MathSciNet  ADS  Google Scholar 

  • Meissner J (1979) Stress and recovery maxima in LDPE melt elongation. Polym Bull 1:397–402

    Article  Google Scholar 

  • Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21

    Article  CAS  Google Scholar 

  • Mitsoulis E, Hatzikiriakos SG (2009) Rolling of bread dough: experiments and simulations. Food Bioprod Process 87:124–138

    Article  Google Scholar 

  • Morrison FA (2001) Understanding rheology. Oxford University Press, Oxford, ISBN:0-19-514166-0, pp 409–418

  • Muliawan EB, Hatzikiriakos SG (2007) Rheology of mozzarella cheese. Int Dairy J 17:1063–1072

    Article  Google Scholar 

  • Münstedt H (1979) New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample. J Rheol 23:421–436

    Article  ADS  Google Scholar 

  • Ng TSK, McKinley GH, Padmanabhan M (2006) Linear to non-linear rheology of wheat flour dough. Appl Rheol 16:265–274

    Google Scholar 

  • Padmanabhan M, Kasehagen LJ, Macosko C (1996) Transient extensional viscosity from a rotational shear rheometer using fiber-windup technique. J Rheol 40:473–481

    Article  CAS  ADS  Google Scholar 

  • Pivokonsky R, Zatloukal M, Filip P (2006) On the predictive/fitting capabilities of the advanced differential constitutive equations for branched LDPE melts. J Non-Newton Fluid Mech 135:58–67

    Article  CAS  Google Scholar 

  • Pivokonsky R, Zatloukal M, Filip P (2008) On the predictive/fitting capabilities of the advanced differential constitutive equations for linear polyethylene melts. J Non-Newton Fluid Mech 150:56–64

    Article  CAS  Google Scholar 

  • Pivokonsky R, Zatloukal M, Filip P, Tzoganakis C (2009) Rheological characterization and modeling of linear and branched metallocene polypropylenes prepared by reactive processing. J Non-Newton Fluid Mech 135:1–6

    Article  Google Scholar 

  • Rasmussen HK, Nielsen JK, Bach A, Hassager O (2005) Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts. J Rheol 49:369–381

    Article  CAS  ADS  Google Scholar 

  • Rolón-Garrido VH, Wagner MH (2007) The MSF model: relation of nonlinear parameters to molecular structure of long-chain branched polymer melts. Rheol Acta 46:583–593

    Article  Google Scholar 

  • Rolón-Garrido VH, Pivokonsky R, Filip P, Zatloukal M, Wagner MH (2009) Modelling elongational and shear rheology of two LDPE melts. Rheol Acta 48:691–697

    Article  Google Scholar 

  • Sentmanat M (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behaviour. Rheol Acta 43:657–669

    Article  CAS  Google Scholar 

  • Sentmanat M, Wang BN, McKinley GH (2005) Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform. J Rheol 49:585–606

    Article  CAS  ADS  Google Scholar 

  • Stamboulides C, Hatzikiriakos SG (2006) Rheology and processing of molten poly(methyl methacrylate) resins. Int Polym Process 21:155–163

    CAS  Google Scholar 

  • Svrcinova P, Kharlamov A, Filip P (2007) On the measurement of elongational viscosity of polyethylene materials. Acta Tech 54:49–57

    Google Scholar 

  • Wagner MH, Rolón-Garrido VH (2008) Verification of branch point withdrawal in elongational flow of pom-pom polystyrene melt. J Rheol 52(5):1049–1068

    Article  CAS  ADS  Google Scholar 

  • Wagner MH, Rolón-Garrido VH (2009a) Recent advances in constitutive modeling of polymer melts. novel trends of rheology III. In: Proceedings of the international conference. Zlin, Czech Republic. ISBN: 978-0-7354-0689-6

  • Wagner MH, Rolón-Garrido VH (2009b) Nonlinear rheology of linear polymer melts: modeling chain stretch by interchain tube pressure and Rouse time. Korea Aust Rheol J 21(4):203–211

    Google Scholar 

  • Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412

    Article  CAS  ADS  Google Scholar 

  • Wagner MH, Yamaguchi M, Takahashi M (2003) Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model. J Rheol 47:779–793

    Article  CAS  ADS  Google Scholar 

  • Wagner MH, Hepperle J, Münstedt H (2004) Relating rheology and molecular structure of model branched polystyrene melts by molecular stress function theory. J Rheol 48:489–503

    Article  CAS  ADS  Google Scholar 

  • Wagner MH, Kheirandish S, Yamaguchi M (2005a) Quantitative analysis of melt elongational behavior of LLDPE/LDPE blends. Rheol Acta 44:198–218

    Article  Google Scholar 

  • Wagner MH, Kheirandish S, Koyama K, Nishioka A, Minegishi A, Takahashi T (2005b) Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory. Rheol Acta 44:235–243

    Article  CAS  Google Scholar 

  • Wang Y, Wang SQ (2008) From elastic deformation to terminal flow of a monodisperse entangled melt in uniaxial extension. J Rheol 52:1275–1290

    Article  CAS  ADS  Google Scholar 

  • Winter HH, Mours M (2007) Iris developments. http://rheology.tripod.com/

  • Wollny K (2009) Anton Paar GmbH, Germany. Personal communication

  • Yu K, Marin JMR, Rasmussen HK, Hassager O (2009) Modeling of Sentmanat extensional rheometer. Annual European Rheology Conference, Cardiff, Wales

Download references

Acknowledgements

J. Aho acknowledges Klaus Wollny (Anton Paar, Germany) and Mercedes Fernández San Martin (University of the Basque Country, Spain) for the technical advices and the Graduate School for Processing of Polymers and Polymer-Based Multimaterials (POPROK) and the Academy of Finland for the financial support. V. H. Rolón-Garrido and M. H. Wagner acknowledge financial support from the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Aho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aho, J., Rolón-Garrido, V.H., Syrjälä, S. et al. Measurement technique and data analysis of extensional viscosity for polymer melts by Sentmanat extensional rheometer (SER). Rheol Acta 49, 359–370 (2010). https://doi.org/10.1007/s00397-010-0439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0439-8

Keywords

Navigation