Skip to main content
Log in

The rheology of polymer solution elastic strands in extensional flow

  • Rapid Communication
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We apply micro-oscillatory cross-slot extensional flow to a semi-dilute poly(ethylene oxide) solution. Micro-particle image velocimetry (μPIV) is used to probe the real local flow field. Extreme flow perturbation is observed, where birefringent strands of extended polymer originate from the stagnation point. This coincides with a large increase in the extensional viscosity. The combination of stagnation point flow and μPIV enables us to investigate directly the stress and strain rates in the strand and so determine the true extensional viscosity of the localised strand alone. The Trouton ratio in the strand is found to be ~4000, amongst the highest values of Trouton ratio ever reported. Consideration of the flow in the exit channels surrounding the highly elastic strand suggests a maximum limit for the pressure drop across the device and the apparent extensional viscosity. This has implications for the understanding of high Deborah number extensional thinning reported in other stagnation point flow situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Arratia PE, Thomas CC, Diorio J, Gollub JP (2006) Elastic instabilities of polymer solutions in cross channel flow. Phys Rev Lett 96:144502

    Article  CAS  PubMed  ADS  Google Scholar 

  • Batchelor GK (1970) Slender-body theory for particles of arbitrary cross-section in Stokes flow. J Fluid Mech 44:419–440

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • De Gennes PG (1974) Coil–stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J Chem Phys 60:5030–5042

    Article  ADS  Google Scholar 

  • Delshad M, Kim DH, Magbagbeola O, Huh C, Pope G, Tarahhom F (2008) Mechanistic interpretation and utilization of viscoelastic behavior of polymer solutions for improved polymer-flood efficiency. SPE/DOE Symposium on Improved Oil Recovery, 20–23 April 2008, Tulsa, Oklahoma, USA

  • Devenand K, Selser JC (1991) Asymptotic behaviour and long-range interactions in aqueous solutions of poly(ethylene oxide). Macromolecules 24:5943–5947

    Article  ADS  Google Scholar 

  • Dou H, Phan-Thien N (2001) Numerical difficulties at high elasticity for viscoelastic flow past a confined cylinder. Int J Comput Eng Sci 2(2):249–266

    Article  Google Scholar 

  • Gardner K, Pike ER, Miles MJ, Keller A, Tanaka K (1982) Photon-correlation velocimetry of polystyrene solutions in extensional flow fields. Polymer 23:1435–1442

    Article  CAS  Google Scholar 

  • Gauri V, Koelling KW (1997) Extensional rheology of concentrated poly(ethylene oxide) solutions. Rheol Acta 36:555–567

    Article  CAS  Google Scholar 

  • Giesekus H (1982) A simple constitutive equation for polymer fluids. J Non-Newton Fluid Mech 11:69–09

    Article  MATH  CAS  Google Scholar 

  • Graessley WW (1980) Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer 21:258–262

    Article  CAS  Google Scholar 

  • Haas R, Durst F (1982) Viscoelastic flow of dilute polymer solutions in regularly packed beds. Rheol Acta 21:566–571

    Article  Google Scholar 

  • Harlen OG, Rallison JM, Chilcott MD (1990) High-Deborah-number flows of dilute polymer solutions. J Non-Newton Fluid Mech 34:319–349

    Article  MATH  CAS  Google Scholar 

  • Harlen OG, Hinch EJ, Rallison JM (1992) Birefringent pipes: the steady flow of a dilute polymer solution near a stagnation point. J Non-Newton Fluid Mech 44:229–265

    Article  MATH  CAS  Google Scholar 

  • Haward S, Odell JA, Li Z, Yuan X-F (2010) Extensional rheology of dilute polymer solutions in oscillatory cross-slot flow: the transient behaviour of birefringent strands. Rheol Acta. doi:10.1007/s00397-009-0420-6

  • James DF, Sridhar T (1995) Molecular conformation during steady-state measurements of extensional viscosity. J Rheol 39:713–724

    Article  CAS  ADS  Google Scholar 

  • Keller A, Müller AJ, Odell JA (1987) Entanglements in semi-dilute solutions as revealed by elongational flow studies. Prog Colloid & Polym Sci 75:179–200

    Article  Google Scholar 

  • Kim BS, Porter RS (1985) Uniaxial draw of poly(ethylene oxide) by solid state extrusion. Macromolecules 18:1214–1217

    Article  CAS  ADS  Google Scholar 

  • Lyazid A, Scrivener O, Teitgen R (1980) In: Astarita G, Marrucci G, Nicolais L (eds) Rheology, vol 2. Plenum, New York, pp 41–148

    Google Scholar 

  • McKinley GH, Brauner O, Yao M (2001) Kinematics of filament stretching in dilute and concentrated polymer solutions. Korea-Australia Rheology J 13:29–35

    Google Scholar 

  • McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42:81–110

    Article  CAS  ADS  Google Scholar 

  • Odell JA, Carrington SP (2006) Extensional flow oscillatory rheometry. J Non-Newton Fluid Mech 137:110–120

    Article  CAS  Google Scholar 

  • Odell JA, Keller A, Müller AJ (1989) Extensional flow behaviour of macromolecules in solution. In: Glass JE (ed) Polymers in aqueous media. American Chemical Society, Washington, pp 193–244

    Chapter  Google Scholar 

  • Perkins TT, Smith DE, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276:2016–2021

    Article  CAS  PubMed  Google Scholar 

  • Phan-Thien N, Tanner RI (1977) A new constitutive equation derived from network theory. J Non-Newton Fluid Mech 2:353–365

    Article  Google Scholar 

  • Pipe J, McKinley GH (2009) Microfluidic rheometry. Mech Res Commun 36:110–120

    Article  Google Scholar 

  • Poole RJ, Alves MA, Oliveira PJ (2007) Purely elastic flow asymmetries. Phys Rev Lett 99:164503

    Article  CAS  PubMed  ADS  Google Scholar 

  • Remmelgas J, Singh P, Leal LG (1999) Computational studies of nonlinear elastic dumbbell models of Boger fluids in a cross-slot flow. J Non-Newton Fluid Mech 88:31–61

    Article  MATH  CAS  Google Scholar 

  • Smith DE, Chu S (1998) Response of flexible polymers to sudden elongational flow. Science 281:1335–1340

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sridhar T (1990) An overview of the project M1. J Non-Newton Fluid Mech 35:85–92

    Article  CAS  Google Scholar 

  • Sridhar T, Tirtaatmadja V, Nguyen DA, Gupta RK (1991) Measurement of extensional viscosity of polymer solutions. J Non-Newton Fluid Mech 40:271–280

    Article  CAS  Google Scholar 

  • Sun N, Chan Man Fong CF, De Kee D (2000) A non-affine transient network model. Rheol Acta 39:174-179

    Article  CAS  Google Scholar 

  • Treloar LKG (1975) The physics of rubber elasticity, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the financial support of the Engineering and Physical Sciences Research Council of the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Odell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haward, S.J., Odell, J.A., Li, Z. et al. The rheology of polymer solution elastic strands in extensional flow. Rheol Acta 49, 781–788 (2010). https://doi.org/10.1007/s00397-010-0453-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0453-x

Keywords

Navigation