Skip to main content
Log in

A magnetic-dipoles-based micro–macro constitutive model for MRFs subjected to shear deformation

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A micro–macro description for the constitutive behavior of magnetorheological fluids (MRFs) under shear deformation is formulated based on a more exact magnetic-dipolar model and a statistical approach. The conventional Bingham’s model of viscoplasticity and the dual-viscosity model for MRFs can be obtained from the proposed model as the special cases. This model can take into account the effect of each of the main influencing factors, such as the intensity of magnetic induction, the size, and the volume fraction of particles, shear strain and shear strain rate, saturated magnetization, on the yield shear stress of MRFs. The satisfactory agreement with the experimental results demonstrates the validity of the proposed model. The effect of light weight coating on the sedimentation velocity of the suspended particles is also investigated. This model can evaluate comprehensively the overall property of an MRF and the effects of different main influencing factors; therefore, it may also be of help for the initial design and optimization of high-performance MRFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bonnecaze RT, Brady JF (1992) Dynamics simulation of an electrorheological fluid. J Chem Phys 96:2183–2202

    Article  CAS  ADS  Google Scholar 

  • Bossis G, Lemaire E (1991) Yield stresses in magnetic suspensions. J Rheol 35:1345–1354

    Article  CAS  ADS  Google Scholar 

  • Chang J, Yang YM, Peng X (2001) Research on a magnetorheological fluid rheological property testing device. Chin J Sci Instrum 22:354–358

    CAS  Google Scholar 

  • Fang S, Zhang P (2001) Simulation of the structure and the dynamics of the particles of MR fluids in rotating magnetic fields. Chin J Chem Phys 14:562–566

    CAS  Google Scholar 

  • Furst E, Gast A (2000a) Dynamics and lateral interactions of dipolar chains. Phys Rev E 62:6916–6925

    Article  CAS  ADS  Google Scholar 

  • Furst E, Gast A (2000b) Micromechanics of magnetorheological suspensions. Phys Rev E 61:6732–6739

    Article  CAS  ADS  Google Scholar 

  • Ginder J, Davis L (1994) Shears tress in magnetoreological fluids: role of magnetic saturation. Appl Phys Lett 65:3410–3412

    Article  CAS  ADS  Google Scholar 

  • Gong RZ, Guan JG, Yuan RZ (2000) Properties of magnetorheological suspension for filled clusters of Cobalt Phthalocyanine/Iron nanoparticles. Chin Chem Phys 13:508–512

    CAS  Google Scholar 

  • Guan JG, Wang W, Gong RZ, Yuan RZ, Gan LH, Tam KC (2002) One-step synthesis of cobalt-phthalocyanine/iron nanocomposite particles with high magnetic susceptibility. Langmuir 18:4198–4204

    Article  CAS  Google Scholar 

  • Jolly MR, Carlson JD, Munoz BC (1996) A model of the behavior of magnetorheological materials. Smart Mater Struct 5:607–614

    Article  CAS  ADS  Google Scholar 

  • Karakoc K, Park EJ, Suleman A (2008) Design considerations for an automotive magnetorheological brake. Mechatronics 18:434–447

    Article  Google Scholar 

  • Kavlicoglu B, Gordaninejad F, Evrensel C, Fuchs A, Korol G (2006) A semi-active, high-torque, magnetorheological fluid limited slip differential clutch. J Vib Acoust 128:604–610

    Article  Google Scholar 

  • Lemaire E, Meunier A, Bossis G, Liu J, Felt D, Bashtovoi P, Matoussevitch N (1995) Influence of the particle size on the rheology of magnetorheological fluids. J Rheol 39:1011–1020

    Article  CAS  ADS  Google Scholar 

  • Li WH, Du H (2003) Design and experimental evaluation of a magnetorheological brake. Int J Adv Manuf Technol 21:508–515

    Article  ADS  Google Scholar 

  • Milecki A, Sedziak D, Ortmann J, Hauke M (2005) Controllability of MR shock absorber for vehicles. Int J Veh Des 38:222–233

    Article  Google Scholar 

  • Peng X, Li H (2007) Analysis of the magnetomechanical behavior of MRFs based on micromechanics incorporating a statistical approach. Smart Mater Struct 16:2477–2485

    Article  ADS  Google Scholar 

  • Shkel YM, Klingenberg DJ (2001) Magnetorheology and magnetostriction of isolated chains of nonlinear magnetizable spheres. J Rheol 45:351–368

    Article  CAS  ADS  Google Scholar 

  • Spasojevic D, Irvine TF, Afgan N (1974) The effect of a magnetic field on the rheodynamic behaviour of ferromagnetic suspensions. Int J Multiph Flow 1:607–622

    Article  Google Scholar 

  • Tang XL, Conrad H (1996) Quasistatic measurements on a magnetorheological fluid. J Rheol 40:1167–1178

    Article  CAS  ADS  Google Scholar 

  • Wan F, Ma X (1994) Magnetic physics. Electric Industry Press, Beijing

    Google Scholar 

  • Xing Z, Lv JG, Li M (2005) Behavior analysis and experimental research on magnetorheological fluids. J Magn Mater Devices 36:21–23

    Google Scholar 

  • Yan WG, Liu SY, Li JJ, Xu YQ (2000) Passive magnetorheological fluid filled hydraulic engine mount. J Beijing Inst Technol 9:434-438

    Google Scholar 

  • Yang G, Spencer BF, Carlson JD, Sain MK (2002) Large-scale MR fluid dampers: modeling and dynamic performance considerations. Eng Struct 24:309-323

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support to this work from the Natural Science Foundation of China under Grant No. 10872220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjian Yi.

Appendix

Appendix

The intensity of magnetic field at point P (Fig. 1) caused by a magnetic pole Q m can be expressed as

$$ \label{eq33} {\tilde {\bf H}}=\frac{1}{4\pi \mu _0 }\frac{Q_m }{r^2}{\hat {\bf {r}}},\quad \quad \quad \mbox{with}\quad {\hat {\bf {r}}}=\frac{{\rm {\bf r}}}{r}. $$
(33)

Thus, the contribution of a dipole with two magnetic poles \(Q_m^+\) and \(Q_m^-\) (Fig. 1) can be expressed as

$$ \label{eq34} {\tilde {\bf {H}}}=\frac{Q_m }{4\pi \mu _0 }\left( {\frac{{\hat {\bf {r}}}_1 }{r_1^2 }-\frac{{\hat {\bf {r}}}_2 }{r_2^2 }} \right), $$
(34)
$$ \begin{array}{lll} \label{eq35} \mbox{with}\;{\hat {\bf {r}}}_1 &=&\frac{{\rm {\bf r}}_1 }{r_1 }=\frac{1}{r_1 }\left( {{\rm {\bf r}}-\frac{1}{2}{\rm {\bf a}}} \right),\\ {\hat {\bf {r}}}_2 &=&\frac{{\rm {\bf r}}_2 }{r_2 }=\frac{1}{r_2 }\left( {{\rm {\bf r}}+\frac{1}{2}{\rm {\bf a}}} \right), \mbox{and}\;{\rm {\bf a}}=a{\hat {\bf {n}}}. \end{array} $$
(35)

Substituting Eq. 35 into 34 gives

$$ \label{eq36} {\tilde {\bf {H}}}=\frac{Q_m }{4\pi \mu _0 }\left( {\frac{r_2^3 -r_1^3 }{r_1^3 r_2^3 }{\rm {\bf r}}-\frac{r_1^3 +r_2^3 }{2r_1^3 r_2^3 }{\rm {\bf a}}} \right). $$
(36)

Making use of the following definitions

$$ \label{eq37} {\rm {\bf j}}=Q_m {\rm {\bf a}}\;\;\mbox{and}\;\;{\rm {\bf j}}=\mu _0 {\rm {\bf m}}, $$
(37)

where j is the magnetic dipolar moment of a magnetized dipole, Eq. 36 can be rewritten as

$$ \label{eq38} {\tilde {\bf {H}}}=\frac{m}{4\pi a}\left( {\frac{r_2^3 -r_1^3 }{r_1^3 r_2^3 }{\rm {\bf r}}-\frac{r_1^3 +r_2^3 }{2r_1^3 r_2^3 }{\rm {\bf a}}} \right) $$
(38)

In free space

$$ \label{eq39} {\tilde {\bf {B}}}=\mu _0 {\tilde {\bf {H}}}=\frac{\mu _0 m}{4\pi a}\left( {\frac{r_2^3 -r_1^3 }{r_1^3 r_2^3 }{\rm {\bf r}}-\frac{r_1^3 +r_2^3 }{2r_1^3 r_2^3 }{\rm {\bf a}}} \right). $$
(39)

It should be noted that, in the existing work, it is usually assumed that || r 1 || ≫ a and || r 2 || ≫ a. Making use the condition \(\frac{a}{\| {{\rm {\bf r}}_1 } \|}\approx 0\) and \(\frac{a}{\| {{\rm {\bf r}}_2} \|}\approx 0\), Eq. 39 are reduced to (Fang and Zhang 2001)

$$ \label{eq40} {\tilde {\bf {B}}}=\frac{\mu _0 }{4\pi r^3}\left[ {3({\rm {\bf m}}\cdot {\hat {\bf {r}}}){\hat {\bf {r}}}-{\rm {\bf m}}} \right]. $$
(40)

Ignoring the additional magnetization of a particle caused by the other magnetized particles, considering a constant applied magnetic field, and making use of the relationship (Fang and Zhang 2001)

$$ \begin{array}{lll} \label{eq41} {\rm {\bf F}}_i &=&-{\rm {\bf m}}\cdot \nabla \Big( {{\rm {\bf B}}_0 +\mathop {{\tilde {\bf {B}}}}\limits^i } \Big)=-{\rm {\bf m}}\cdot \nabla \bigg( {{\rm {\bf B}}_0 +\sum\limits_{j\ne i} {\mathop {{\tilde {\bf {B}}{\it_j}}}\limits^i } } \bigg)\\ &=&-{\rm {\bf m}}\cdot \nabla \sum\limits_{j\ne i} {\mathop {{\tilde {\bf {B}}{\it _j}}}\limits^i } , \end{array} $$
(41)

the magnetic force on the ith particle, F i , can be derived as

$$ \begin{array}{lll} \label{eq42} \par {{\rm {\bf F}}_i } &=& \frac{\mu _0 }{4\pi }\sum\limits_{j\ne i} {\frac{m}{2R}{\rm {\bf m}}}\cdot {{\rm {\bf i}}_k \frac{\partial }{\partial x_k }\!\left\{\! {\frac{{\rm {\bf r}}_{ij} -R{\hat {\bf {n}}}}{\big[ {r_{ij}^2 \!+\!R^2\!-\!2Rr_{ij} \cos \theta }\! \big]^{\frac{3}{2}}}}\right.}\\ &&{\left.{-\frac{{\rm {\bf r}}_{ij} +R{\hat {\bf {n}}}}{\big[ {r_{ij}^2 \!+\!R^2\!+\!2Rr_{ij} \cos \theta } \big]^{\frac{3}{2}}}} \right\}} \\ &=& \frac{\mu _0 }{4\pi }\sum\limits_{j\ne i} {\frac{m}{2R}\left\{ {\frac{{\rm {\bf m}}}{r_1^3 }-\frac{m( {3r_{ij} \cos \theta -3R} )( {{\rm {\bf r}}_{ij} -R{\hat {\bf {n}}}} )}{r_1^5 }}\right.}\\&&{\left.{ -\frac{{\rm {\bf m}}}{r_2^3 }\!+\!\frac{m({3r_{ij} \cos \theta \!+\!3R})( {{\rm {\bf r}}_{ij} \!+\!R{\hat {\bf {n}}}} )}{r_2^5 }} \right\}} \\ &=& \frac{3\mu _0 }{8\pi }\!\sum\limits_{j\ne i}\! {\frac{m^2}{Rr_1^5 r_2^5 }\!\left\{ \vphantom{{\left.{\left[ {\frac{1}{3}\left( {r_1^2 r_2^5 -r_1^5 r_2^2 } \right)+Rr_{ij} \cos \theta \big(r_1^5 +r_2^5 \big)+R^2\big(r_1^5 -r_2^5 \big)} \right]{\rm {\bf \hat {n}}}} \right\}}} {\left[ {r_{ij} \cos \theta \left(r_1^5 -r_2^5 \right)+R\left(r_1^5 +r_2^5 \right)} \right]{\rm {\bf r}}_{ij}}\right.}\\ &&{\left.{ +\!\left[ {\frac{1}{3}\!\left( {r_1^2 r_2^5 \!-\!r_1^5 r_2^2 } \right)\!+\!Rr_{ij} \cos \theta \!\left(r_1^5 \!+\!r_2^5 \right)}\right.}\right.}\!\!\!\\&&{\left.{\left.{ +R^2\left(r_1^5 -r_2^5 \right)} \vphantom{{\left.{\left[ {\frac{1}{3}\left( {r_1^2 r_2^5 -r_1^5 r_2^2 } \right)+Rr_{ij} \cos \theta \left(r_1^5 +r_2^5 \right)}\right.}\right.}}\right]{\hat {\bf {n}}}} \right\}} \par \par \end{array} $$
(42)

where a i  =  a j  =  2R, \({\rm {\bf m}}_i\, \approx\, {\rm {\bf m}}_j \,\approx\, {\rm {\bf m}}\,=\,\frac{4}{3}\pi R^3\chi {\rm {\bf H}}\,\approx\) \(\frac{4}{3}\pi R^3\chi {\rm {\bf H}}_0 \) and m i  ≈ m j  ≈ m have been employed, ignoring the disturbance of magnetic dipoles \({\tilde {\bf {H}}}\) to the magnetic field since \({\tilde {\bf {H}}}\)H 0 , and \(r_1 =\sqrt {r_{ij}^2 + R^2 - 2Rr_{ij} \cos \theta}\) and \(r_2 =\sqrt {r_{ij}^2 +R^2+2Rr_{ij} \cos \theta}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, C., Peng, X. & Zhao, C. A magnetic-dipoles-based micro–macro constitutive model for MRFs subjected to shear deformation. Rheol Acta 49, 815–825 (2010). https://doi.org/10.1007/s00397-010-0468-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0468-3

Keywords

Navigation