Skip to main content
Log in

Extensional rheology of concentrated emulsions as probed by capillary breakup elongational rheometry (CaBER)

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Elongational flow behavior of w/o emulsions has been investigated using a capillary breakup elongational rheometer (CaBER) equipped with an advanced image processing system allowing for precise assessment of the full filament shape. The transient neck diameter D(t), time evolution of the neck curvature κ(t), the region of deformation l def and the filament lifetime t c are extracted in order to characterize non-uniform filament thinning. Effects of disperse volume fraction ϕ, droplet size d sv , and continuous phase viscosity η c on the flow properties have been investigated. At a critical volume fraction ϕ c , strong shear thinning, and an apparent shear yield stress τ y,s occur and shear flow curves are well described by a Herschel–Bulkley model. In CaBER filaments exhibit sharp necking and t c as well as κ max  = κ (t = t c ) increase, whereas l def decreases drastically with increasing ϕ. For ϕ < ϕ c , D(t) data can be described by a power-law model based on a cylindrical filament approximation using the exponent n and consistency index k from shear experiments. For ϕ ≥ ϕ c , D(t) data are fitted using a one-dimensional Herschel–Bulkley approach, but k and τ y,s progressively deviate from shear results as ϕ increases. We attribute this to the failure of the cylindrical filament assumption. Filament lifetime is proportional to η c at all ϕ. Above ϕ c, κ max as well as t c /η c scale linearly with τ y,s. The Laplace pressure at the critical stretch ratio ε c which is needed to induce capillary thinning can be identified as the elongational yield stress τ y,e, if the experimental parameters are chosen such that the axial curvature of the filament profile can be neglected. This is a unique and robust method to determine this quantity for soft matter with τ y  < 1,000 Pa. For the emulsion series investigated here a ratio τ y,e/τ y,s = 2.8 ± 0.4 is found independent of ϕ. This result is captured by a generalized Herschel–Bulkley model including the third invariant of the strain-rate tensor proposed here for the first time, which implies that τ y,e and τ y,s are independent material parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexandrou AN, Le Menn P, Georgiou G, Entov V (2003) Flow instabilities of Herschel–Bulkley fluids. J Non-Newt Fluid Mech 116:19–32

    Article  MATH  CAS  Google Scholar 

  • Basterfield RA, Lawrence CJ, Adams MJ (2005) On the interpretation of orifice extrusion data for viscoplastic materials. Chem Eng Sci 60:2599–2607

    Article  CAS  Google Scholar 

  • Bazilevskii AV, Entov VM, Lerner MM, Rozhkov AN (1997) Degradation of polymer solution filaments. Polym Sci 39:474–482

    CAS  Google Scholar 

  • Bazilevskii AV, Entov VM, Rozhkov AN (2001) Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym Sci A 43:716–726

    Google Scholar 

  • Brummer R, Godersky S (1999) Rheological studies to objectify sensations occurring when cosmetic emulsions are applied to the skin. Coll Surf A 152:89–94

    Article  CAS  Google Scholar 

  • Calderon FL, Stora T, Monval OM, Poulin P, Bibette J (1994) Direct measurement of colloidal forces. Phys Rev Lett 72:2959–2962

    Article  ADS  PubMed  Google Scholar 

  • Castro M, Giles DW, Macosko CW, Moaddel T (2010) Comparison of methods to measure yield stress of soft solids. J Rheol 54:81–94

    Article  CAS  ADS  Google Scholar 

  • Clasen C, Plog JP, Kulicke WM, Owens M, Macosko C, Scriven LE, Verani M, McKinley GH (2006) How dilute are dilute solutions in extensional flows? J Rheol 50:849–881

    Article  CAS  ADS  Google Scholar 

  • Coussot P (2004) Rheometry of pastes, suspensions, and granular materials. Applications in industry and environment. Wiley, Hoboken

    Google Scholar 

  • Coussot P, Gaulard F (2005) Gravity flow instability of viscoplastic materials: the ketchup drip. Phys Rev E 72:031409

    Article  CAS  ADS  Google Scholar 

  • Dickinson E, Goller MI, Wedlock DI (1993) Creaming and rheology of emulsions containing polysaccharide and nonionic or anionic surfactants. Colloid Surface A 75:195–201

    Article  CAS  Google Scholar 

  • Doshi P, Suryo R, Yildirim OE, McKinley GH, Basaran OA (2003) Scaling in pinch-off of generalized Newtonian fluids. J Non-Newt Fluid Mech 113:1–27

    Article  MATH  CAS  Google Scholar 

  • Foerster T, Waldmann-Laue M, Both W, Jassoy C (1999) Lipoprotein creams: utilization of multifunctional ingredients for the preparation of cosmetic emulsions with excellent skin compatibility. Int J of Cosmet Sci 21:253–264

    Article  Google Scholar 

  • Ghannam MT, Esmail N (2005) Yield stress behavior for crude oil-polymer emulsions. J Pet Sci Eng 47:105–115

    Article  CAS  Google Scholar 

  • Graebel, WP (2007) Advanced fluid mechanics Associated, Press

  • Jager-Lézer N, Tranchant JF, Alard V, Vu C, Tchoreloff PC, Grossiord JL (1998) Rheological analysis of highly concentrated w/o emulsions. Rheol Acta 23:129–138

    Article  Google Scholar 

  • Kheirandish S, Guybaidullin I, Wohlleben W, Willenbacher N (2008) Shear and elongational flow behavior of acrylic thickener solutions Part I: effect of intermolecular aggregation. Rheol Acta 47:999–1013

    Article  CAS  Google Scholar 

  • Kheirandish S, Guybaidullin I, Willenbacher N (2009) Shear and elongational flow behavior of acrylic thickener solutions. Part II: effect of gel content. Rheol Acta 48:397

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Lee HM, Lee JW, Park OO (1997) Rheology and dynamics of water-in-oil emulsions under steady and dynamic shear flow. J Colloid Interface Sci 185:297–305

    Article  CAS  PubMed  Google Scholar 

  • Leschonski K (1984) Representation and evaluation of particle size analysis data. Part Part Syst Charact 1:89–95

    Article  Google Scholar 

  • Lowry BJ, Steen PH (1995) Capillary surfaces: stability from families of equilibria with application to the liquid bridge. Proc R Soc London A 449:411–439

    Article  MATH  CAS  ADS  Google Scholar 

  • Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley-VCH

  • Mahajan MP, Tsige M, Taylor PL, Rosenblatt C (1999) Stability of liquid crystalline bridges. Phys Fluids 11:491–493

    Article  MATH  CAS  ADS  Google Scholar 

  • Mason TG, Bibette J, Weitz DA (1996) Yielding and flow of monodisperse emulsions. J Colloid Interface Sci 179:439–448

    Article  CAS  Google Scholar 

  • McClements DJ (1999) Food emulsions: principles, practice, and techniques. CRC Press, 2nd Edition

  • McKinley GH (2005) Annual rheology reviews. British Society of Rheology, Aberystwyth

    Google Scholar 

  • McKinley GH, Tripathi A (2000) How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J Rheol 44:653–670

    Article  CAS  ADS  Google Scholar 

  • Miller D, Löffler M (2006) Rheological effects with a hydrophobically modified polymer. Colloids Surf A 288:165–169

    Article  CAS  Google Scholar 

  • Miller D, Wiener EM, Turowski A, Thunig C, Hoffmann H (1999) O/W emulsions for cosmetics products stabilized by alkyl phosphates—rheology and storage tests. Coll Surf A 152:155–160

    Article  CAS  Google Scholar 

  • Miller E, Clasen, Rothstein JP (2009) The effect of step-stretch parameters on capillary breakup extensional rheology (CaBER) measurements. Rheol Acta 48:625–639

    Article  CAS  Google Scholar 

  • Niedzwiedz K, Arnolds O, Willenbacher N, Brummer R (2009) How to characterize yield stress fluids with capillary breakup extensional rheometry (CaBER)? Appl Rheol 19:41969

    Google Scholar 

  • Oliveira MSN, Yeh R, McKinley GH (2006) Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solutions. J Non-Newtonian Fluid Mech 137:137–148

    Article  CAS  Google Scholar 

  • Pal R (2001) Novel viscosity equations for emulsions of two immiscible liquids. J Rheol 45:509–520

    Article  CAS  ADS  Google Scholar 

  • Penna ALB, Sivieri K, Oliveira MN (2001) Relation between quality and rheological properties of lactic beverages. J Food Eng 49:7–13

    Article  Google Scholar 

  • Ponton A, Clément P, Grossiord JL (2001) Corroboration of Princen’s theory to cosmetic concentrated water-in-oil emulsions. J Rheol 45:521–526

    Article  CAS  ADS  Google Scholar 

  • Princen HM (1983) Rrheology of foams and highly concentrated emulsions .1. Elastic properties and yield stress of a cylindrical model system. J Colloid Interface Sci 91:160–175

    Article  CAS  Google Scholar 

  • Princen HM, Kiss AD (1986) Rheology of foams and highly concentrated emulsions .3. Static shear modulus. J Colloid Interface Sci 112:427–437

    Article  CAS  Google Scholar 

  • Princen HM, Kiss AD (1989) Rrheology of foams and highly concentrated emulsions .4. An experimental-study of the shear viscosity and yield stress of concentrated emulsions. J Colloid Interface Sci 128:176–187

    Article  CAS  Google Scholar 

  • Prud’homme RK, Khan SA (1996) Foams: theory, measurements and applications. Marcel Dekker Inc, New York

    Google Scholar 

  • Renardy M (2002) Similarity solutions for jet breakup for various models of viscoelastic fluids. J Non-Newtonian Fluid Mech 104:65–74

    Article  MATH  CAS  Google Scholar 

  • Renardy M, Renardy Y (2004) Similarity solutions for breakup of jets of power law fluids. J Non-Newtonian Fluid Mech 122:303–312

    Article  MATH  CAS  Google Scholar 

  • Rieger MM (1991) Stability testing of macroemulsions. Cosmet Toiletries 106:60–69

    Google Scholar 

  • Rodd LE, Scott TP, Cooper-White JJ, McKinley GH (2005) Capillary break-up rheometry of low-viscosity elastic fluids. Appl Rheol 15:12–27

    CAS  Google Scholar 

  • Schubert H (2005) Emulgiertechnik: Grundlagen, Verfahren und Anwendungen, Behr’s-Verlag

  • Stelter M, Brenn G (2000) Validation and application of a novel elongational device for polymer solutions. J Rheol 44:595–616

    Article  CAS  ADS  Google Scholar 

  • Tadros TF (1994) Fundamental principles of emulsion rheology and their applications. Colloids and Surf A: Physicochem Eng Aspects 91:39–55

    Article  CAS  Google Scholar 

  • Tiwari MK, Bazilevskii AV, Yarin AL, Megaridis CM (2009) Elongational and shear rheology of carbon nanotube suspensions. Rheol Acta 48:597–609

    Article  CAS  Google Scholar 

  • Webster MF, Matallah H, Sujatha KS, Banaai MJ (2008) Numerical modelling of step-strain for stretched filaments. J Non-Newtonian Fluid Mech 151:38–58

    Article  MATH  CAS  Google Scholar 

  • Welin-Berger K, Neelissen J, Bergenståhl E (2001) In vitro permeation profile of a local anaesthetic compound from topical formulations with different rheological behaviour—verified by in vivo efficacy data. Eur J Pharm Sci 14:229–236

    Article  CAS  PubMed  Google Scholar 

  • Willenbacher N, Matter Y, Gubaydullin I, Schaedler V (2008) Effect of aggregation on shear and elongational flow properties of acrylic thickeners. Korea-Aust Rheol J 20:109–116

    Google Scholar 

  • Wilson R, Van Schie BJ, Howes D (1998) Overview of the preparation, use, and biological studies on polyglycerol polyricinoleate. Food Chem Toxicol 36:711–718

    Article  CAS  PubMed  Google Scholar 

  • Yildirim OE, Basaran OA (2001) Deformation and breakup of stretching bridges of Newtonian and sheer-thinning liquids: comparison of one- and two-dimensional models. Chem Eng Sci 56:211–233

    Article  CAS  Google Scholar 

  • Zografi G (1982) Physical stability assessment of emulsions and related disperse systems—a critical-review. J Soc Cosmet Chem 33:345–358

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Julia Weberling and Bianca Cornehl for their help in sample preparation and performing CaBER experiments. Further, we acknowledge financial support by Beiersdorf AG and Kompetenznetz Verfahrenstechnik Pro3 e.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Willenbacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niedzwiedz, K., Buggisch, H. & Willenbacher, N. Extensional rheology of concentrated emulsions as probed by capillary breakup elongational rheometry (CaBER). Rheol Acta 49, 1103–1116 (2010). https://doi.org/10.1007/s00397-010-0477-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0477-2

Keywords

Navigation