Skip to main content
Log in

Rheology of pulp suspensions using ultrasonic Doppler velocimetry

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Conventional rheometry coupled with local velocity measurements (ultrasonic Doppler velocimetry) are used to study the flow behaviour of various commercial pulp fibre suspensions at fibre mass concentrations ranging from 1 to 5 wt.%. Experimental data obtained using a stress-controlled rheometer by implementing a vane in large cup geometry exhibits apparent yield stress values which are lower than those predicted before mainly due to existence of apparent slip. Pulp suspensions exhibit shear-thinning behaviour up to a high shear rate value after which Newtonian behaviour prevails. Local velocity measurements prove the existence of significant wall slippage at the vane surface. The velocimetry technique is also used to study the influence of pH and lignin content on the flow behaviour of pulp suspensions. The Herschel–Bulkley constitutive equation is used to fit the local steady-state velocity profiles and to predict the steady-state flow curves obtained by conventional rheometry. Consistency between the various sets of data is found for all suspensions studied, including apparent yield stress, apparent wall slip and complete flow curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahlgren PAV (1970) Chlorite delignification of spruce wood. PhD Thesis, McGill Univ., Montreal

  • Archer LA (2005) Polymer processing instabilities, Chapter four. Marcel Dekker, New York, pp 73–120

    Google Scholar 

  • Bachelet C, Dantan Ph, Flaud P (2004) Indirect on-line determination of the rheological behaviour of a power law fluid based on numerical flow simulations. Eur Phys J Appl Phys 25:209–217

    Article  ADS  Google Scholar 

  • Baravian C, Lalante A, Parker A (2002) Vane rheometry with a large finite gap. Appl Rheol 12:81–87

    CAS  Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Non-Newton Fluid Mech 56:221–251

    Article  CAS  Google Scholar 

  • Barnes HA, Carnali JO (1990) The vane-in-cup as a novel rheometer geometry for shear thinning and thixotropic materials. J Rheol 34(6):841–866

    Article  ADS  Google Scholar 

  • Barnes HA, Nguyen QD (2001) Rotating vane rheometry—a review. J Non-Newton Fluid Mech 98(1):1–14

    Article  MATH  CAS  Google Scholar 

  • Bécu L, Grondin P, Colin A, Manneville S (2004) How does a concentrated emulsion flow? Yielding, local rheology and wall slip. Colloids and surfaces A: Physicochem. Eng Aspects 263:146–152

    Google Scholar 

  • Bécu L, Manneville S, Colin A (2006) Yielding and flow in adhesive and non-adhesive concentrated emulsions. Phys Rev Lett 96:138302

    Article  ADS  PubMed  Google Scholar 

  • Bennington CPJ, Kerekes RJ, Grace JR (1990) The yield stress of fibre suspensions. Can J Chem Eng 68(10):748–757

    Article  CAS  Google Scholar 

  • Bennington CPJ, Kerekes RJ, Grace JR (1991) Motion of pulp fibre suspensions in rotary devices. Can J Chem Eng 69:251–258

    Article  CAS  Google Scholar 

  • Bergenholtz J, Brady JF, Vicic M (2002) The non-Newtonian rheology of dilute colloidal suspensions. J Fluid Mech 456:239–75

    Article  MATH  CAS  ADS  Google Scholar 

  • Bertola V, Bertrand F, Tabuteau H, Bonn D, Coussot P (2003) Wall slip and yielding in pasty materials. J Rheol 1211:47–61

    Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2001) Transport phenomena, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Biermann CJ (1993) Handbook of pulping and papermaking. Academic, San Diego

    Google Scholar 

  • Bramhall AD, Hutton JF (1960) Wall effect in the flow of lubricating greases in plunger viscometers. Br J Appl Phys 11:363

    Article  ADS  Google Scholar 

  • Chen KF, Chen SM (1997) Fluidisation properties of high-consistency fibre suspensions. Exp Therm Fluid Sci 14:149–159

    Article  Google Scholar 

  • Cullen PJ, O’Donnel CP, Houska M (2003) Rotational rheometry using complex geometries—A review. J Texture Stud 34:1–20

    Article  Google Scholar 

  • Cloitre M, Borrega R, Leibler L (2000) Rheological aging and rejuvenation in microgel pastes. Phys Rev Lett 85:4819–4822

    Article  CAS  ADS  PubMed  Google Scholar 

  • Coussot P, Piau J (1995) Large-scale field coaxial cylinder rheometer for the study of the rheology of natural coarse suspensions. J Rheol 39(1):104–123

    Article  ADS  Google Scholar 

  • Coussot P, Leonov AI, Piau JM (1993) Rheology of concentrated dispersed systems in low molecular weight matrix. J Non-Newton Fluid Mech 46:179–217

    Article  MATH  CAS  Google Scholar 

  • Coussot P, Nguyen QD, Huynh HT, Bonn D (2002) Avalanche behaviour in yield stress fluids. Phys Rev Lett 88:175501

    Article  ADS  PubMed  Google Scholar 

  • Coussot P, Tocquer L, Lanos C, Ovarlez G (2009) Macroscopic vs local rheology of yield stress fluids. J Non-Newton Fluid Mech 158:85–90

    Article  CAS  Google Scholar 

  • Damani R, Powel R, Hagen N (1993) Viscoelastic characterization of medium consistency pulp suspensions. Can J Chem Eng 71:676–685

    Article  CAS  Google Scholar 

  • Derakhshandeh B, Hatzikiriakos SG, Bennington CPJ (2010) The apparent yield stress of pulp fibre suspensions. J Rheol 54(6). doi:10.1122/1.3473923

    Google Scholar 

  • Duffy GG, Abdullah L (2003) Fibre suspension flow in small diameter pipes. Appita J 56:290–295

    Google Scholar 

  • Duffy GG, Ramachandra S, Xu JQ (2004) Developments in processing fibre suspensions. In: Proceedings of the Fifth-eighth Appita Annual Conference and Exhibition 2:433–442

  • Ehrnrooth EML (1982) Softening and mechanical behaviour of single wood pulp fibres-the influence of matrix composition and chemical and physical characteristics. Ph.D. dissertation Univ. Helsinki

  • Gullichsen J, Fogelholm C (1999) Papermaking science and technology: chemical pulping. Book 6A. Fapet Oy, Helsinki

  • Gullichsen J, Harkonen E (1981) Medium consistency technology. II. Storage dischargers and centrifugal pumps. TAPPI J 64

  • Hatzikiriakos SG, Dealy JM (1991) Wall slip of molten high density polyethylenes. I. Sliding plate rheometer studies. J Rheol 35:497–523

    Article  CAS  ADS  Google Scholar 

  • Hietaniemi J, Gullichsen J (1996) Flow properties of medium consistency fibre suspensions. J Pulp Pap Sci 22:469–474

    Google Scholar 

  • Jana S, Kapoor B, Acrivos A (1995) Apparent wall-slip velocity coefficients in concentrated suspensions of noncolloidal particles. J Rheol 39:1123–1132

    Article  CAS  ADS  Google Scholar 

  • Jarny S, Roussel N, Rodts S, Le Roy R, Coussot P (2005) Rheological behaviour of cement pastes from MRI velocimetry. Concrete Cement Res 35:1873–1881

    Article  CAS  Google Scholar 

  • Jastrzebski ZD (1967) Entrance effects and wall effects in an extrusion rheometer during the flow of concentrated suspensions. Ind Eng Chem Fundam 6:445–453

    Article  CAS  Google Scholar 

  • Kalyon DM (2005) Apparent slip and viscoelasticity of concentrated suspensions. J Rheol 49(3):621–640

    Article  CAS  ADS  Google Scholar 

  • Kerekes RJ (1983) Pulp flocculation in decaying turbulence: a literature review. J Pulp Pap Sci 9(3):86–91

    CAS  Google Scholar 

  • Kerekes RJ, Schell CJ (1992) Characterization of fibre flocculation by a crowding factor. J Pulp Pap Sci 18(1):32–38

    CAS  Google Scholar 

  • Koseli V, Zeybek S, Uludag Y (2006) Online viscosity measurement of complex solutions using ultrasound doppler velocimetry. Turk J Chem 30:297–305

    CAS  Google Scholar 

  • Larson RG (1998) The structure and rheology of complex fluids. Oxford Uni. Press

  • Lee PFW, Duffy GG (1976) An analysis of the drag reducing regime of pulp suspension flow. Tappi 59:119–122

    Google Scholar 

  • Li TQ, Weldon M, Odberg L, McCarthy MJ, Powell RL (1995) Pipe flow behaviour of hardwood pulp suspension studied by NMRI. J Pulp Pap Sci 21:408–414

    Google Scholar 

  • Lindstrom T, Westman L (1980) The colloidal behaviour of kraft lignin. Colloid Polym Sci 258(4):168–173

    Google Scholar 

  • Logdill GR, Duffy GG (1988) The shear behaviour of medium concentration wood pulp suspensions. Appita 41(6):456–461

    Google Scholar 

  • Manneville S, Bécu L, Colin A (2004) High-frequency ultrasonic speckle velocimetry in sheared complex fluids. Eur Phys J Appl Phys 28:361–373

    Article  ADS  Google Scholar 

  • Martin FL, Parker A, Hort J, Hollowood TA, Taylor AJ (2005) Using vane geometry for measuring the texture of stirred yogurt. J Texture Stud 36:421–438

    Article  Google Scholar 

  • Mason SG (1950) The flocculation of pulp suspensions and the formation of paper. TAPPI J 33:440

    Google Scholar 

  • McClements DJ, Povery MJW, Jury M (1990) Ultrasonic characterization of a food emulsion. Ultrasonics 28:266–272

    Article  Google Scholar 

  • Meeker SP, Bonnecaze RT, Cloitre M (2004a) Slip and flow of soft particle pastes. Phys Rev Lett 92:198302/1–4

    Article  Google Scholar 

  • Meeker SP, Bonnecaze RT, Cloitre M (2004b) Slip and flow of pastes of soft particles: direct observation and rheology. J Rheol 48:1295–1320

    Article  CAS  ADS  Google Scholar 

  • Mhetar V, Archer LA (1998) Slip in entangled polymer solutions. Macromolecules 31:6639–6649

    Article  CAS  ADS  Google Scholar 

  • Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210–222

    Article  CAS  ADS  Google Scholar 

  • Møller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2:274–283

    Article  Google Scholar 

  • Nguyen QD, Boger DV (1983) Yield stress measurement for concentrated suspensions. J Rheol 27:321–349

    Article  Google Scholar 

  • Nguyen QD, Boger DV (1985) Direct yield stress measurement with the vane method. J Rheol 29:335–347

    Article  ADS  Google Scholar 

  • Nguyen QD, Boger DV (1992) Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech 24:47–88

    Article  ADS  Google Scholar 

  • Ogawa K, Yoshikawa S, Suguro A, Ikeda J, Ogawa H (1990) Flow characteristics and circular pipe flow of pulp-suspension. J Chem Eng Jpn 23:1–6

    Article  CAS  Google Scholar 

  • Ovarlez G, Bertrand F, Rodts S (2006) Local determination of the constitutive law of a dense suspension of noncolloidal particles through MRI. J Rheol 50:259–292

    Article  CAS  ADS  Google Scholar 

  • Ovarlez G, Rodts S, Chateau X, Coussot P (2009) Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol Acta 48:831–844

    Article  CAS  Google Scholar 

  • Ramírez-Gilly M, Martínez-Padilla LP, Manero O (2007) Particle image velocimetry applied to suspensions of millimetric-size particles using a vane-in-a-large-baffled-cup rheometer. J Food Eng 78:1117–1126

    Article  Google Scholar 

  • Raynaud JS, Moucheront P, Baudez JC, Bertrand F, Guilbaud JP, Coussot P (2002) Direct determination by nuclear magnetic resonance of the thixotropic and yielding behaviour of suspensions. J Rheol 46:709–732

    Article  CAS  ADS  Google Scholar 

  • Smook GA (1992) Handbook for pulp and paper technologists. Tappi Pr, 2nd edn

  • Stickel et al (2009) Rheology measurements of a biomass slurry: an inter-laboratory study. Rheol Acta 48:1005–1015

    Article  CAS  Google Scholar 

  • Stockie JM (1997) Analysis and computation of immersed boundaries with application to pulp fibres. Ph. D. Thesis, University of British Columbia

  • Stone IE, Scallan AM (1968) The effect of component removal upon the porous structure of the cell wall of wood. Part III. A comparison between the sutphite and kraft processes. Pulp Paper Mag Can 60(12)

  • Swerin A (1993) Rheological properties of cellulosic fibre suspensions flocculated by cationic polyacrylamides. Colloids Surf A 133:279–294

    Article  Google Scholar 

  • Swerin A, Powell RL, Odberg L (1998) Linear and nonlinear dynamic viscoelasticity of pulp fibre suspensions. Nordic Pulp Paper Res J 7(3):126–132

    Article  Google Scholar 

  • Takeda Y (1986) Velocity profile measurement by ultrasound doppler shift method. Int J Heat Fluid Flow 7:313–318

    Article  CAS  Google Scholar 

  • Toven K (2000) Swelling and physical properties of ECF/ECF light bleached softwood kraft pulps. Inter. Pulp Bleaching Conference, Nova Scotia, Jun. 27–30

  • Vinogradov GV, Froishteter GB, Trilisky KK, Smorodinsky EL (1975) The flow of plastic disperse systems in the presence of the wall effect. Rheol Acta 14:765–775

    Article  CAS  Google Scholar 

  • Vinogradov GV, Froishteter GB, Trilisky KK, Smorodinsky EL (1978) The generalized theory of flow of plastic disperse systems with account of the wall effect. Rheol Acta 17(2):156–165

    Article  CAS  Google Scholar 

  • Walls HJ, Caines SB, Sanchez AM, Khan SA (2003) Yield stress and wall slip phenomena in colloidal silica gels. J Rheol 47:847–867

    Article  CAS  ADS  Google Scholar 

  • Westman L, Lindstrom T (1981) Swelling and mechanical properties of cellulose hydrogels. J Appl Polym Sci 26(8):2519–2532

    Article  CAS  Google Scholar 

  • Wikström T, Defibrator S, Rasmuson A (1998) Yield stress of pulp suspensions: the influence of fibre properties and processing conditions. Nordic Pulp Paper Res J 13:243

    Article  Google Scholar 

  • Yoshimura A, Prud’homme RK (1988) Wall slip corrections for Couette and parallel disk viscometers. J Rheol 32:53–67

    Article  CAS  ADS  Google Scholar 

  • Zhang XD, Giles DW, Barocas VH, Yasunaga K, Macosko CW (1998) Measurement of foam modulus via a vane rheometer. J Rheol 42(4):871–889

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge NSERC for the collaborative grant (CRDPJ 379851).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savvas G. Hatzikiriakos.

Additional information

Chad P. J. Bennington, deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derakhshandeh, B., Hatzikiriakos, S.G. & Bennington, C.P.J. Rheology of pulp suspensions using ultrasonic Doppler velocimetry. Rheol Acta 49, 1127–1140 (2010). https://doi.org/10.1007/s00397-010-0485-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0485-2

Keywords

Navigation