Skip to main content
Log in

Nonlinear and linear viscoelastic properties of a novel type of xanthan gum with industrial applications

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The influence of concentration in the viscoelastic properties of an “advanced performance” xanthan gum was studied by means of both techniques, small amplitude oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS). G′ and G″, within linear viscoelastic range, were demonstrated to be higher than the ones for the conventional xanthan gum pointing out to a less fluid-like behaviour. The combination of the use of both rheological measurements revealed a regime transition within the concentration range studied. Thus, the deviations from the Cox-Merz rule for the concentrations above 0.20 % (m/m) indicate the occurrence of a more development structure. In addition, the analysis of the influence of concentration on the local shear-thickening parameter (T) obtained by LAOS confirmed the modification of the gum structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Calero N, Muñoz J, Ramírez P, Guerrero A (2010) Flow behaviour, linear viscoelasticity and surface properties of chitosan aqueous solutions. Food Hydrocoll 24(6):659–666

    Article  Google Scholar 

  • Callet F, Milas M, Rinaudo M (1987) Influence of acetyl and pyruvate contents on rheological properties of xanthan in dilute solution. Int J Biol Macromol 9(5):291–293

    Article  Google Scholar 

  • Carmona JA, Ramírez P, Calero N, Muñoz J (2014) Large amplitude oscillatory shear of xanthan gum solutions. Effect of sodium chloride (NaCl) concentration. J Food Eng 126:165–172

    Article  Google Scholar 

  • Cevoli C, Balestra F, Ragni L, Fabbri A (2013) Rheological characterisation of selected food hydrocolloids by traditional and simplified techniques. Food Hydrocoll 33:142–150

    Article  Google Scholar 

  • Cuvelier G, Launay B (1986) Concentration regimes in xanthan gum solutions deduced from flow and viscoelastic properties. Carbohydr Polym 6(5):321–333

    Article  Google Scholar 

  • Dealy JM, Wissbrun KF (1990) Linear viscoelasticity. In: Melt rheology and its role in plastics processing, theory and applications. Van Nostrand Reinhold, New York, pp 42–102

    Chapter  Google Scholar 

  • Dogan M, Kayacier A, Toker ÖS, Yilmaz MT, Karaman S (2013) Steady, dynamic, creep, and recovery analysis of ice cream mixes added with different concentrations of xanthan gum. Food Bioprocess Technol 1–14

  • Ewoldt RH, Winter P, McKinley GH (2007) MITlaos version 2.1 Beta for MATLAB.MATLAB-based data analysis software for characterizing nonlinear viscoelastic responses to oscillatory shear strain. Self-published, Cambridge

  • Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458

    Article  Google Scholar 

  • Ewoldt RH, Winter P, Maxey J, McKinley GH (2010) Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta 49(2):191–212

    Article  Google Scholar 

  • Fitzpatrick P, Meadows J, Ratcliffe I, Williams PA (2013) Control of the properties of xanthan/glucomannan mixed gels by varying xanthan fine structure. Carbohydr Polym 92(2):1018–1025

    Article  Google Scholar 

  • García-Ochoa F, Casas JA (1994) Apparent yield stress in xanthan gum solutions at low concentrations. Chem Eng J Biochem Eng J 53(3):B41–B46

    Article  Google Scholar 

  • Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Non-Newtonian Fluid Mech 107(1–3):51–65

    Article  Google Scholar 

  • Hyun K, Nam JG, Wilhelm M, Ahn KH, Lee SJ (2003) Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear flow). Korea Aust Rheol J 15(2):97–105

    Google Scholar 

  • Jeanes A, Pittsley JE, Senti FR (1961) Polysaccharide B‐1459: a new hydrocolloid polyelectrolyte produced from glucose by bacterial fermentation. J Appl Polym Sci 5(17):519–526

    Article  Google Scholar 

  • Kang FS, Pettit DJ (1993) Xanthan, gellan, welan, and rhamsan. In: Industrial gums. Polysaccharides and their derivatives, 3rd edn. Academic, San Diego, pp 341–399

    Google Scholar 

  • Katzbauer B (1998) Properties and applications of xanthan gum. Polym Degrad Stab 59(1):81–84

    Article  Google Scholar 

  • Marcotte M, Taherian-Hoshahili AR, Ramaswamy HS (2001) Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Res Int 34(8):695–703

    Article  Google Scholar 

  • Margaritis A, Zajic JE (1978) Mixing, mass transfer, and scale‐up of polysaccharide fermentations. Biotechnol Bioeng 20(7):939–1001

    Article  Google Scholar 

  • Meyer EL, Fuller GG, Clark RC, Kulicke WM (1993) Investigation of xanthan gum solution behavior under shear flow using rheooptical techniques. Macromolecules 26(3):504–511

    Article  Google Scholar 

  • Moorhouse R, Walkinshaw MD, Arnott S (1977) Xanthan gum—molecular conformation and interactions. In: Sandford PA (ed) Extracellular microbial polysaccharides. ACS Symposium Series, no. 45. Washington, D.C., pp 90–102

  • Muñoz J, Rincón F, Alfaro MC, Zapata I, de la Fuente J, Beltrán O et al (2007) Rheological properties and surface tension of Acacia tortuosa gum exudate aqueous dispersion. Carbohydr Polym 70:198–205

    Article  Google Scholar 

  • Norton IT, Goodall DM, Frangou SA, Morris ER, Rees DA (1984) Mechanism and dynamics of conformational ordering in xanthan polysaccharide. J Mol Biol 175(3):371–394

    Article  Google Scholar 

  • Ogawa K, Yui T (1998) X-ray diffraction study of polysaccharides. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, pp 101–130

    Google Scholar 

  • Pal R (1995) Oscillatory, creep and steady flow behavior of Xanthan-thickened oil-in-water emulsions. AIChE J 41(4):783–794

    Article  Google Scholar 

  • Rinaudo M, Milas M (1978) Polyelectrolite behaviour of a bacterial polysaccharide from Xanthomonas campestris: comparison with CMC. Biopolymers 17:2663–2678

    Article  Google Scholar 

  • Rochefort WE, Middleman S (1987) Rheology of xanthan gum: salt, temperature, and strain effects in oscillatory and steady shear experiments. J Rheol 31:337–369

    Article  Google Scholar 

  • Sahin H, Ozdemir F (2004) Effect of some hydrocolloids on the rheological properties of different formulated ketchups. Food Hydrocoll 18(6):1015–1022

    Article  Google Scholar 

  • Sandford PA, Pittsley JE, Knutson CA, Watson PR, Cadmus MC, Jeanes A (1977) Variation in Xanthomonas campestris NRRL B-1459: characterization of xanthan products of differing pyruvic acid content. In: Sandford PA, Laskin RH (eds) Microbial extracellular polysaccharides. American Chemical Society, Washington, DC, pp 192–210

    Chapter  Google Scholar 

  • Smith IH, Symes KC, Lawson CJ, Morris ER (1981) Influence of the pyruvate content of xanthan on macromolecular association in solution. Int J Biol Macromol 3(2):129–134

    Article  Google Scholar 

  • Song KW, Kuk HY, Chan GS (2006) Rheology of concentrated xanthan gum solutions: oscillatory shear flow behavior. Korea Aust Rheol J 18(2):67–81

    Google Scholar 

  • Speers RA, Tung MA (1986) Concentration and temperature dependence of flow behavior of xanthan gum dispersions. J Food Sci 51(1):96–98

    Article  Google Scholar 

  • Talukdar MM, Vinckier I, Moldenaers P, Kinget R (1996) Rheological characterization of xanthan gum and hydroxypropylmethyl cellulose with respect to controlled-release drug delivery. J Pharm Sci 85(5):537–540

    Article  Google Scholar 

  • Wyatt NB, Liberatore MW (2009) Rheology and viscosity scaling of the polyelectrolyte xanthan gum. J Appl Polym Sci 114(6):4076–4084

    Article  Google Scholar 

  • Wyatt NB, Gunther CM, Liberatore MW (2011) Drag reduction effectiveness of dilute and entangled xanthan in turbulent pipe flow. J Non-Newtonian Fluid Mech 166(1):25–31

    Article  Google Scholar 

Download references

Acknowledgments

The financial support received (Project CTQ2011-27371) from the Spanish Ministerio de Economía y Competitividad (MINECO) and from the European Commission (FEDER Programme) is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Ramírez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure A1

Proton NMR spectrum for the Advanced performance and a conventional (Keltrol 521) xanthan gum solutions in D2O at 85 °C. (JPG 140 kb)

Figure A2

Frequency dependence of complex viscosity derived from SAOS measurements (black circles) and shear-rate dependence of steady shear viscosity (red triangles) for 0.15 % (m/m) (panel a) and (black circles) for 0.10 % (m/m) (panel b) of xanthan gum solutions. T = 20 °C. Lines are the linear fit + the prediction interval at 95 % for each plot. (JPG 746 kb)

Figure A3

Frequency dependence of complex viscosity derived from SAOS measurements (open symbols) and shear-rate dependence of steady shear viscosity (closed symbols, from Carmona, submitted for publication) for 0.10 % (m/m), 0.15 % (m/m), 0.25 % (m/m) and 0.40 % (m/m) circles xanthan gum solutions. T = 20 °C. Standard deviation of the mean (three replicates) for η < 10 % and for η* < 5 %. (JPG 216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmona, J.A., Lucas, A., Ramírez, P. et al. Nonlinear and linear viscoelastic properties of a novel type of xanthan gum with industrial applications. Rheol Acta 54, 993–1001 (2015). https://doi.org/10.1007/s00397-015-0888-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0888-1

Keywords

Navigation