Skip to main content
Log in

A study on the limitations of a vane rheometer for mineral suspensions using image processing

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

This study presents the results from the rheological measurement of clay suspensions using vane geometry in a wide gap configuration. It focuses on how measurement of viscosity cannot be effective for two reasons: the limits of the vane geometry itself and the limits of the material depending on its content of solid particles. Image analysis of the flow while shearing the material is carried out to relate the flow behavior. Several approaches to compute the shear flow curve from torque-rotational velocity data are used. The results demonstrate that the applied setpoint while applying a logarithmic shear rate ramp can be very different from the calculated shear rate from existing theories. Depending on the solid volume fraction of the particles in the mixture, we relate the macroscopic behavior using image analysis and the shear flow curves to the rheophysical regime of the flow of the suspensions. Therefore, this paper has two simultaneous goals: the first one is to describe the physical phenomena which control macroscopic behavior and the second one is to highlight the limits of the vane geometry for viscosity measurement of mineral suspensions like kaolinite pastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Baravian C, Lalante A, Parker A (2002) Vane rheometry with a large, finite gap. Appl Rheol 12:81–87

  • Bodurtha P, Matthews G, Kettle J, Roy I (2005) Influence of anisotropy on the dynamic wetting and permeation of paper coatings. J Colloid Int Sci 283:171–189

  • Bourguignon ES (2010) Dessalement de matériaux poreux modèles par la méthode des compresses. Ecole Nationale des Ponts et Chaussées

  • Coussot P (1995) Structural similarity and transition from Newtonian to non-Newtonian behavior for clay-water suspensions. Phys Rev Lett 74:3971–3974

  • Coussot P (2005) Rheometry of pastes, suspensions, and granular materials. Wiley, Hoboken

  • Coussot P, Ancey C (1999) Rheophysical classification of concentrated suspensions and granular pastes. Phys Rev E 59:4445–4457

    Article  Google Scholar 

  • Coussot P, Tocquer L, Lanos C, Ovarlez G (2009) Macroscopic vs. local rheology of yield stress fluid. J Non-Newton Fluid Mech 158:85–90

  • Estellé P, Lanos C (2012) High torque vane rheometer for concrete: principle and validation from rheological measurements. Appl Rheol 22:12881

    Google Scholar 

  • Estellé P, Lanos C, Perrot A (2008) Processing the Couette viscometry data using a Bingham approximation in shear rate calculation. J Non-Newton Fluid Mech 154:31–38

  • Estellé P, Lanos C, Perrot A, Amziane S (2008b) Processing the vane shear flow data from Couette analogy. Appl Rheol 18:34307

    Google Scholar 

  • Fall A, Bertrand F, Ovarlez G, Bonn D (2012) Shear thickening of cornstach suspensions. J Rheol 56:575

  • Ferraris C, Brower L, Banfill PF (2001) Comparison of concrete rheometers: international tests at LCPC (Nantes, France), US Department of Commerce. National Inst Stand Technol

  • Feys D, Wallevik J, Yahia A, et al. (2012) Extension of the Reiner–Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers. Mater Struct 46:289–311

  • Frankel NA, Acrivos A (1967) On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci 22:847–853

  • Gantenbein D, Schoelkopf J, Matthews G, Gane PA (2011) Determining the size distribution-defined aspect ratio of platy particles. Appl Clay Sci 53:544–552

  • Herschel WH, Bulkley R (1926) Measurement of consistency as applied to rubber-benzene solutions. Am Soc Test Proc 26:621–633

  • Jau WC, Yang CT (2010) Development of a modified concrete rheometer to measure the rheological behavior of conventional and self-consolidating concretes. Cem Concr Compos 32:450–460

  • Keentok M, Milthorpe J, O’Donovan E (1985) On the shearing zone around rotating vanes in plastic liquids: theory and experiment. J Non-Newton Fluid Mech 17:23–35

  • Koehler E, Fowler D, Ferraris C, Amziane S (2005) A new, portable rheometer for fresh self-consolidating concrete. ACI Special Publication

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137–152

  • Lecompte T, Perrot A, Picandet V, et al. (2012) Cement-based mixes: shearing properties and pore pressure. Cem Concr Res 42:139–147

  • Lootens D, van Damme H, Hémar Y, Hébraud P (2005) Dilatant flow of concentrated suspensions of rough particles. Phys Rev Lett 95:268302

    Article  Google Scholar 

  • Macosko C (1994) Principles, measurements, and applications. Wiley-VCG, New York

  • Malkin AY (1994) Rheology fundamentals. ChemTech, Toronto-Scarborough

  • Mansoutre S, Colombet P, Van Damme H (1999) Water retention and granular rheological behavior of fresh C3S paste as a function of concentration. Cem Concr Res 29:1141–143

  • Ovarlez G (2011) Caractérisation rhéologique des fluides à seuil. Rhéologie

  • Ovarlez G, Bertrand F, Rodts S (2006) Local determination of the constitutive law of a dense suspension of noncolloidal particles through MRI. J Rheol 50:259–292

  • Ovarlez G, Rodts S, Coussot P, et al. (2008) Wide gap Couette flows of dense emulsions: local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Phys Rev E 78:036307

  • Ovarlez G, Mahaut F, Bertrand F, Chateau X (2011) Flows and heterogeneities with a vane tool : magnetic resonance imaging measurements. J Rheol 55:197–223

  • Peker S, Helvaci S (2008) Solid–liquid two phase flow. Elsevier, Amsterdam

  • Perrot A, Lecompte T, Khelifi H et al (2012) Yield stress and bleeding of fresh cement pastes. Cem Concr Res 42:937–944

    Article  Google Scholar 

  • Perrot A, Rangeard D, Levigneur A (2016) Linking rheological and geotechnical properties of kaolinite materials for earthen construction. Mater Struct 49:4647

  • Pierre A, Estellé P, Lanos C (2013) Extension of spread-slump formulae for yield stress evaluation. Appl Rheol 23:63849

  • Pierre A, Lanos C, Estellé P, Perrot A (2015) Rheological properties of calcium sulfate suspensions. Cem Concr Res 76(2015):70–81

    Article  Google Scholar 

  • Reynolds O (1985) LVII. On the dilatancy of media composed of rigid particles in contact. Phil Mag 20:469–481

  • Roussel N, Lemaître A, Flatt RJ, Coussot P (2010) Steady state flow of cement suspensions: a micromechanical state of the art. Cem Concr Res 40:77–84

  • Salençon J (2001) Handbook of continuum mechanics. General concepts, thermoelasticity. Springer, Berlin

    Book  Google Scholar 

  • Struble LJ, Lei W (1995) Rheological changes associated with setting of cement paste. Adv Cem Based Mater 2:224–230

  • Tanners R, Walters K (1999) Rheology: an historical perspective. Elsevier, Amsterdam

  • Tchamba JC, Amziane S, Ovarlez G (2008) Lateral stress exerted by fresh cement paste on formwork: laboratory experiments. Cem Concr Res 38:459–466

  • Wallevik O, Feys D, Wallevik J, Khayat H (2005) Avoiding inaccurate interpretations of rheological measurements for cement based materials. Cem Concr Res 78:100–109

  • Wu W (2014) Advances in modeling landslides and debris flows. Springer, Heidelberg

  • Zbik M, Smart RS (1998) Nanomorphology of kaolinites: comparative SEM and AFM studies. Clay Clay Miner 46:153–160

  • Zbik M, Raftery N, Smart RS, Frotst R (2010) Kaolinite platelet orientation for XRD and AFM applications. Appl Clay Sci 50:299–304

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Pierre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierre, A., Perrot, A., Histace, A. et al. A study on the limitations of a vane rheometer for mineral suspensions using image processing. Rheol Acta 56, 351–367 (2017). https://doi.org/10.1007/s00397-017-0993-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-017-0993-4

Keywords

Navigation