Skip to main content

Advertisement

Log in

Propagation of Aß pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

In brains of patients with Alzheimer’s disease (AD), Aβ peptides accumulate in parenchyma and, almost invariably, also in the vascular walls. Although Aβ aggregation is, by definition, present in AD, its impact is only incompletely understood. It occurs in a stereotypical spatiotemporal distribution within neuronal networks in the course of the disease. This suggests a role for synaptic connections in propagating Aβ pathology, and possibly of axonal transport in an antero- or retrograde way—although, there is also evidence for passive, extracellular diffusion. Striking, in AD, is the conjunction of tau and Aβ pathology. Tau pathology in the cell body of neurons precedes Aβ deposition in their synaptic endings in several circuits such as the entorhino-dentate, cortico-striatal or subiculo-mammillary connections. However, genetic evidence suggests that Aβ accumulation is the first step in AD pathogenesis. To model the complexity and consequences of Aβ aggregation in vivo, various transgenic (tg) rodents have been generated. In rodents tg for the human Aβ precursor protein, focal injections of preformed Aβ aggregates can induce Aβ deposits in the vicinity of the injection site, and over time in more distant regions of the brain. This suggests that Aβ shares with α-synuclein, tau and other proteins the property to misfold and aggregate homotypic molecules. We propose to group those proteins under the term “propagons”. Propagons may lack the infectivity of prions. We review findings from neuropathological examinations of human brains in different stages of AD and from studies in rodent models of Aβ aggregation and discuss putative mechanisms underlying the initiation and spread of Aβ pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aho L, Pikkarainen M, Hiltunen M, Leinonen V, Alafuzoff I (2010) Immunohistochemical visualization of amyloid-beta protein precursor and amyloid-beta in extra- and intracellular compartments in the human brain. J Alzheimers Dis 20:1015–1028. doi:10.3233/JAD-2010-091681

    PubMed  CAS  Google Scholar 

  2. Ashe KH, Zahs KR (2010) Probing the biology of Alzheimer’s disease in mice. Neuron 66:631–645. doi:10.1016/j.neuron.2010.04.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bateman RJ, Munsell LY, Morris JC, Swarm R, Kevin E, Holtzman DM (2006) Quantifying CNS protein production and clearance rates in humans using in vivo stable isotope labeling, immunoprecipitation, and tandem mass spectrometry. Nat Med 12:856–861. doi:10.1038/nm1438.Quantifying

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Beach TG, Sue LI, Walker DG, Sabbagh MN, Serrano G, Dugger BN et al (2012) Striatal amyloid plaque density predicts Braak neurofibrillary stage and clinicopathological Alzheimer’s disease: implications for amyloid imaging. J Alzheimers Dis 28:869–876. doi:10.3233/JAD-2011-111340

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15:349–357. doi:10.1038/nn.3028

    Article  PubMed  CAS  Google Scholar 

  6. Bertram L, Tanzi RE (2012) The genetics of Alzheimer’s disease. Prog Mol Biol Transl Sci 107:79–100. doi:10.1016/B978-0-12-385883-2.00008-4

    Article  PubMed  CAS  Google Scholar 

  7. Bolmont T, Clavaguera F, Meyer-Luehmann M, Herzig MC, Radde R, Staufenbiel M et al (2007) Induction of tau pathology by intracerebral infusion of amyloid-beta-containing brain extract and by amyloid-beta deposition in APP × Tau transgenic mice. Am J Pathol 171:2012–2020. doi:10.2353/ajpath.2007.070403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  9. Braak H, Braak E, Silverman W, Wisniewski HM, Bobinski M, Wegiel J (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357

    Article  PubMed  CAS  Google Scholar 

  10. Braak H, Del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121:171–181. doi:10.1007/s00401-010-0789-4

    Article  PubMed  Google Scholar 

  11. Braak H, Del Tredici K (2013) Amyloid-β may be released from non-junctional varicosities of axons generated from abnormal tau-containing brainstem nuclei in sporadic Alzheimer’s disease: a hypothesis. Acta Neuropathol 126:303–306. doi:10.1007/s00401-013-1153-2

    Article  PubMed  Google Scholar 

  12. Braak H, Del Tredici K (2015) The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 138:2814–2833. doi:10.1093/brain/awv236

    Article  PubMed  Google Scholar 

  13. Bright J, Hussain S, Dang V, Wright S, Cooper B, Byun T et al (2015) Human secreted tau increases amyloid-beta production. Neurobiol Aging 36:693–709. doi:10.1016/j.neurobiolaging.2014.09.007

    Article  PubMed  CAS  Google Scholar 

  14. Calhoun ME, Wiederhold KH, Abramowski D, Phinney AL, Probst A, Sturchler-Pierrat C et al (1998) Neuron loss in APP transgenic mice. Nature 395:755–756. doi:10.1038/27351

    Article  PubMed  CAS  Google Scholar 

  15. Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO (2013) Cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol 39:593–611. doi:10.1111/nan.12042

    Article  PubMed  CAS  Google Scholar 

  16. Do Carmo S, Cuello AC (2013) Modeling Alzheimer’s disease in transgenic rats. Mol Neurodegener 8:37. doi:10.1186/1750-1326-8-37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. van Cauwenberghe C, Van Broeckhoven C, Sleegers K (2015) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med. doi:10.1038/gim.2015.117

    PubMed  Google Scholar 

  18. Chávez-Gutiérrez L, Bammens L, Benilova I, Vandersteen A, Benurwar M, Borgers M et al (2012) The mechanism of γ-Secretase dysfunction in familial Alzheimer disease. EMBO J 31:2261–2274. doi:10.1038/emboj.2012.79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cheng IH, Scearce-Levie K, Legleiter J, Palop JJ, Gerstein H, Bien-Ly N et al (2007) Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J Biol Chem 282:23818–23828. doi:10.1074/jbc.M701078200

    Article  PubMed  CAS  Google Scholar 

  20. Chin J (2011) Selecting a mouse model of Alzheimer’s disease. Methods Mol Biol 670:169–189. doi:10.1007/978-1-60761-744-0_13

    Article  PubMed  CAS  Google Scholar 

  21. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. doi:10.1146/annurev.biochem.75.101304.123901

    Article  PubMed  CAS  Google Scholar 

  22. Cirrito JR, May PC, O’Dell M, Taylor JW, Parsadanian M, Cramer JW et al (2003) In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. J Neurosci 23:8844–8853. doi:10.1186/1750-1326-8-13

    PubMed  CAS  Google Scholar 

  23. Cole G, Neal JW, Singhrao SK, Jasani B, Newman GR (1993) The distribution of amyloid plaques in the cerebellum and brain stem in Down’s syndrome and Alzheimer’s disease: a light microscopical analysis. Acta Neuropathol 85:542–552. doi:10.1007/BF00230495

    Article  PubMed  CAS  Google Scholar 

  24. Cox B, Ness F, Tuite M (2003) Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics 165:23–33

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Crimins JL, Rocher AB, Luebke JI (2012) Electrophysiological changes precede morphological changes to frontal cortical pyramidal neurons in the rTg4510 mouse model of progressive tauopathy. Acta Neuropathol 124:777–795. doi:10.1007/s00401-012-1038-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cummings BJ, Satou T, Head E, Milgram NW, Cole GM, Savage MJ et al (1996) Diffuse plaques contain C-terminal A beta 42 and not A beta 40: evidence from cats and dogs. Neurobiol Aging 17:653–659

    PubMed  CAS  Google Scholar 

  27. Delaère P, Duyckaerts C, He Y, Pierre F, Hauw JJ (1991) Subtypes and differential laminar distributions of βA4 deposits in Alzheimer’s disease: relationship with the intellectual status of 26 cases. Acta Neuropathol 81:328–335

    Article  PubMed  Google Scholar 

  28. Delaère P, Duyckaerts C, Masters C, Beyreuther K, Piette F, Hauw JJ (1990) Large amounts of neocortical beta A4 deposits without neuritic plaques nor tangles in a psychometrically assessed, non-demented person. Neurosci Lett 116:87–93

    Article  PubMed  Google Scholar 

  29. Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, Davies P et al (1992) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13:179–189

    Article  PubMed  CAS  Google Scholar 

  30. Duyckaerts C, Colle M-A, Seilhean D, Hauw J-J (1998) Laminar spongiosis of the dentate gyrus: a sign of disconnection, present in cases of severe Alzheimer’s disease. Acta Neuropathol 95:413–420. doi:10.1007/s004010050818

    Article  PubMed  CAS  Google Scholar 

  31. Duyckaerts C, Delatour B, Potier M-C (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118:5–36. doi:10.1007/s00401-009-0532-1

    Article  PubMed  CAS  Google Scholar 

  32. Duyckaerts C, Hauw J-J (1997) Prevalence, incidence and duration of Braak’s stages in the general population: can we know? Neurobiol Aging 18:362–369

    Article  PubMed  CAS  Google Scholar 

  33. Duyckaerts C, Uchihara T, Seilhean D, He Y, Hauw JJ (1997) Dissociation of Alzheimer type pathology in a disconnected piece of cortex. Acta Neuropathol 93:501–507

    Article  PubMed  CAS  Google Scholar 

  34. Eisele YS, Bolmont T, Heikenwalder M, Langer F, Jacobson LH, Yan Z-XX et al (2009) Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation. Proc Natl Acad Sci USA 106:12926–12931. doi:10.1073/pnas.0903200106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Eisele YS, Fritschi SK, Hamaguchi T, Obermüller U, Füger P, Skodras A et al (2014) Multiple factors contribute to the peripheral induction of cerebral β-amyloidosis. J Neurosci 34:10264–10273. doi:10.1523/JNEUROSCI.1608-14.2014

    Article  PubMed  CAS  Google Scholar 

  36. Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL, Powers ET et al (2015) Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov. doi:10.1038/nrd4593

    PubMed  Google Scholar 

  37. Eisele YS, Obermüller U, Heilbronner G, Baumann F, Kaeser SA, Wolburg H et al (2010) Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 330:980–982. doi:10.1126/science.1194516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Epelbaum S, Youssef I, Lacor P, Chaurand P, Duplus E, Brugg B et al (2015) Acute amnestic encephalopathy in amyloid-ß oligomers injected mice is due to their widespread diffusion in vivo. Neurobiol Aging 36:2043–2052. doi:10.1016/j.neurobiolaging.2015.03.005

    Article  PubMed  CAS  Google Scholar 

  39. Fritschi SK, Cintron A, Ye L, Mahler J, Buhler A, Baumann F et al (2014) Abeta seeds resist inactivation by formaldehyde. Acta Neuropathol 128:477–484. doi:10.1007/s00401-014-1339-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Fritschi SK, Langer F, Kaeser SA, Maia LF, Portelius E, Pinotsi D et al (2014) Highly potent soluble amyloid-beta seeds in human Alzheimer brain but not cerebrospinal fluid. Brain 137:2909–2915. doi:10.1093/brain/awu255

    Article  PubMed  Google Scholar 

  41. George S, Ronnback A, Gouras GK, Petit GH, Grueninger F, Winblad B et al (2014) Lesion of the subiculum reduces the spread of amyloid beta pathology to interconnected brain regions in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun 2:17. doi:10.1186/2051-5960-2-17

    Article  PubMed  PubMed Central  Google Scholar 

  42. German DC, White CL, Sparkman DR (1987) Alzheimer’s disease: neurofibrillary changes in nuclei that project to the cerebral cortex. Neuroscience 21:305–312

    Article  PubMed  CAS  Google Scholar 

  43. Ghetti B, Oblak AL, Boeve BF, Johnson KA, Dickerson BC, Goedert M (2015) Invited review: frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol 41:24–46. doi:10.1111/nan.12213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gotz J, Chen F, van Dorpe J, Nitsch RM, Götz J, Chen F et al (2001) Formation of neurofibrillary tangles in P301 l tau transgenic mice induced by Abeta 42 fibrils. Science (80-) 293:1491–1495. doi: 10.1126/science.1062097

  45. Gouras GK, Willén K, Tampellini D (2012) Critical role of intraneuronal Aβ in Alzheimer’s disease: technical challenges in studying intracellular Aβ. Life Sci 91:1153–1158. doi:10.1016/j.lfs.2012.06.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Grinberg LT, Rüb U, Ferretti REL, Nitrini R, Farfel JM, Polichiso L et al (2009) The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol 35:406–416. doi:10.1111/j.1365-2990.2009.00997.x

    Article  PubMed  CAS  Google Scholar 

  47. Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2:a006270. doi:10.1101/cshperspect.a006270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hamaguchi T, Eisele YS, Varvel NH, Lamb BT, Walker LC, Jucker M (2012) The presence of Abeta seeds, and not age per se, is critical to the initiation of Abeta deposition in the brain. Acta Neuropathol 123:31–37. doi:10.1007/s00401-011-0912-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hardy JA, Higgins GA (1992) Alzheimer’ s Disease: The Amyloid Cascade Hypothesis. Science (80-) 256:184–185

  50. Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407. doi:10.1146/annurev.biochem.66.1.385

    Article  PubMed  CAS  Google Scholar 

  51. Heilbronner G, Eisele YS, Langer F, Kaeser SA, Novotny R, Nagarathinam A et al (2013) Seeded strain-like transmission of β-amyloid morphotypes in APP transgenic mice. EMBO Rep 14:1017–1022. doi:10.1038/embor.2013.137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Héraud C, Goufak D, Ando K, Leroy K, Suain V, Yilmaz Z et al (2013) Increased misfolding and truncation of tau in APP/PS1/tau transgenic mice compared to mutant tau mice. Neurobiol Dis 62:100–112. doi:10.1016/j.nbd.2013.09.010

    Article  PubMed  CAS  Google Scholar 

  53. Herzig MC, Van Nostrand WE, Jucker M (2006) Mechanism of cerebral beta-amyloid angiopathy: murine and cellular models. Brain Pathol 16:40–54

    Article  PubMed  CAS  Google Scholar 

  54. Herzig MC, Winkler DT, Burgermeister P, Pfeifer M, Kohler E, Schmidt SD et al (2004) Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci 7:954–960. doi:10.1038/nn1302

    Article  PubMed  CAS  Google Scholar 

  55. Heuer E, Rosen RF, Cintron A, Walker LC (2012) Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr Pharm Des 18:1159–1169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hooli BV, Mohapatra G, Mattheisen M, Parrado AR, Roehr JT, Shen Y et al (2012) Role of common and rare APP DNA sequence variants in Alzheimer disease. Neurology 78:1250–1257. doi:10.1212/WNL.0b013e3182515972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S et al (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science (80-) 274:99–102

  58. Hyman BT, Van Hoesen GW, Beyreuther K, Masters CL (1989) A4 amyloid protein immunoreactivity is present in Alzheimer’s disease neurofibrillary tangles. Neurosci Lett 101:352–355

    Article  PubMed  CAS  Google Scholar 

  59. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science (80-) 225:1168–70

  60. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13. doi:10.1016/j.jalz.2011.10.007

    Article  PubMed  PubMed Central  Google Scholar 

  61. Irwin DJ, Abrams JY, Schonberger LB, Leschek W, Mills JL, Lee VM et al (2013) Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol 70:462–468. doi:10.1001/jamaneurol.2013.1933.Evaluation

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jack CR, Jorge J, Vladimir RB (2013) Cerebral amyloid PET imaging in Alzheimer’ s disease. Acta Neuropathol 126:643–657. doi: 10.1007/s00401-013-1185-7

    Article  PubMed  CAS  Google Scholar 

  63. Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P, Verhey FR et al (2015) Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313:1924–1938. doi:10.1001/jama.2015.4668

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jarrett JT, Berger EP, Lansbury PT (1993) The carboxy terminus of the beta-amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32:4693–4697. doi:10.1021/bi00069a001

    Article  PubMed  CAS  Google Scholar 

  65. Jarrett JT, Lansbury PT (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058. doi:10.1016/0092-8674(93)90635-4

    Article  PubMed  CAS  Google Scholar 

  66. Jaunmuktane Z, Mead S, Ellis M, Wadsworth JDF, Nicoll AJ, Kenny J et al (2015) Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature 525:247–250. doi:10.1038/nature15369

    Article  PubMed  CAS  Google Scholar 

  67. Jucker M, Walker LC (2011) Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol 70:532–540. doi:10.1002/ana.22615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kane MD, Lipinski WJ, Callahan MJ, Bian F, Durham RA, Schwarz RD et al (2000) Evidence for seeding of beta -amyloid by intracerebral infusion of Alzheimer brain extracts in beta-amyloid precursor protein transgenic mice. J Neurosci 20:3606–3611

    PubMed  CAS  Google Scholar 

  69. Kanmert D, Cantlon A, Muratore CR, Jin M, O’Malley TT, Lee G et al (2015) C-terminally truncated forms of tau, but not full-length tau or its C-terminal fragments, are released from neurons independently of cell death. J Neurosci 35:10851–10865. doi:10.1523/JNEUROSCI.0387-15.2015

    Article  PubMed  CAS  Google Scholar 

  70. Kelly PH, Bondolfi L, Hunziker D, Schlecht HP, Carver K, Maguire E et al (2003) Progressive age-related impairment of cognitive behavior in APP23 transgenic mice. Neurobiol Aging 24:365–378

    Article  PubMed  CAS  Google Scholar 

  71. Kovacs GG (2015) Invited review: neuropathology of tauopathies: principles and practice. Neuropathol Appl Neurobiol 41:3–23. doi:10.1111/nan.12208

    Article  PubMed  CAS  Google Scholar 

  72. Kuchibhotla KV, Wegmann S, Kopeikina KJ, Hawkes J, Rudinskiy N, Andermann ML et al (2014) Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proc Natl Acad Sci USA 111:510–514. doi:10.1073/pnas.1318807111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kuo YM, Emmerling MR, Vigo-Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH et al (1996) Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem 271:4077–4081

    Article  PubMed  CAS  Google Scholar 

  74. De Lacoste MC, White CL (1993) The role of connectivity in Alzheimer’s disease pathogenesis. A review and model system. Neurobiol Aging 14:1–16

    Article  PubMed  Google Scholar 

  75. Lamb BT, Call LM, Slunt HH, Bardel KA, Lawler AM, Eckman CB et al (1997) Altered metabolism of familial Alzheimer’s disease-linked amyloid precursor protein variants in yeast artificial chromosome transgenic mice. Hum Mol Genet 6:1535–1541

    Article  PubMed  CAS  Google Scholar 

  76. Langer F, Eisele YS, Fritschi SK, Staufenbiel M, Walker LC, Jucker M (2011) Soluble Abeta seeds are potent inducers of cerebral beta-amyloid deposition. J Neurosci 31:14488–14495. doi:10.1523/JNEUROSCI.3088-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Le TV, Crook R, Hardy J, Dickson DW (2001) Cotton wool plaques in non-familial late-onset Alzheimer disease. J Neuropathol Exp Neurol 60:1051–1061

    PubMed  CAS  Google Scholar 

  78. Lévesque M, Parent A (2005) The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci USA 102:11888–11893. doi:10.1073/pnas.0502710102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Lewis J, Dickson DW (2016) Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol. doi:10.1007/s00401-015-1507-z

    PubMed  Google Scholar 

  80. Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 91:12243–12247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Maia LF, Kaeser SA, Reichwald J, Hruscha M, Martus P, Staufenbiel M et al (2013) Changes in amyloid-beta and Tau in the cerebrospinal fluid of transgenic mice overexpressing amyloid precursor protein. Sci Transl Med 5:194re2. doi:10.1126/scitranslmed.3006446

    Article  PubMed  CAS  Google Scholar 

  82. Mann DMA, Esiri MM (1989) The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down’s syndrome. J Neurol Sci 89:169–179

    Article  PubMed  CAS  Google Scholar 

  83. Mann DMA, Hardy J (2013) Amyloid or tau: the chicken or the egg? Acta Neuropathol 126:609–613. doi:10.1007/s00401-013-1162-1

    Article  PubMed  Google Scholar 

  84. McGowan E, Pickford F, Kim J, Onstead L, Eriksen J, Yu C et al (2005) Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47:191–199. doi:10.1016/j.neuron.2005.06.030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K et al (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    Article  PubMed  CAS  Google Scholar 

  86. Metsaars W, Hauw J-J, Welsem M, Duyckaerts C (2003) A grading system of Alzheimer disease lesions in neocortical areas. Neurobiol Aging 24:563–572

    Article  PubMed  Google Scholar 

  87. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E et al (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784. doi:10.1126/science.1131864

    Article  PubMed  CAS  Google Scholar 

  88. Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A et al (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451:720–724. doi:10.1038/nature06616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Meyer-Luehmann M, Stalder M, Herzig MC, Kaeser SA, Kohler E, Pfeifer M et al (2003) Extracellular amyloid formation and associated pathology in neural grafts. Nat Neurosci 6:370–377. doi:10.1038/nn1022

    Article  PubMed  CAS  Google Scholar 

  90. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G et al (2000) High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058

    PubMed  CAS  Google Scholar 

  91. Murakami T, Ishiguro N, Higuchi K (2014) Transmission of systemic AA amyloidosis in animals. Vet Pathol 51:363–371. doi:10.1177/0300985813511128

    Article  PubMed  CAS  Google Scholar 

  92. Musiek ES, Holtzman DM (2015) Three dimensions of the amyloid hypothesis: time, space and “wingmen”. Nat Neurosci 18:800–806. doi:10.1038/nn.4018

    Article  PubMed  CAS  Google Scholar 

  93. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332. doi:10.1016/j.neuron.2004.07.003

    Article  PubMed  CAS  Google Scholar 

  94. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

    Article  PubMed  CAS  Google Scholar 

  95. Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, van der Flier WM, van Berckel BN et al (2015) Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA 313:1939–1949. doi:10.1001/jama.2015.4669

    Article  PubMed  PubMed Central  Google Scholar 

  96. Patterson BW, Elbert DL, Mawuenyega KG, Kasten T, Ovod V, Ma S et al (2015) Age and amyloid effects on human central nervous system amyloid-beta kinetics. Ann Neurol 78:439–453. doi:10.1002/ana.24454

    Article  PubMed  CAS  Google Scholar 

  97. Perez SE, Raghanti MA, Hof PR, Kramer L, Ikonomovic MD, Lacor PN et al (2013) Alzheimer’s disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla). J Comp Neurol 521:4318–4338. doi:10.1002/cne.23428

    Article  PubMed  CAS  Google Scholar 

  98. Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science (80-) 307:262–265. doi: 10.1126/science.1105850

  99. Pooler AM, Phillips EC, Lau DHW, Noble W, Hanger DP (2013) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14:389–394. doi:10.1038/embor.2013.15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Pooler AM, Polydoro M, Maury EA, Nicholls SB, Reddy SM, Wegmann S et al (2015) Amyloid accelerates tau propagation and toxicity in a model of early Alzheimer’ s disease. Acta Neuropathol Commun 3:1–11. doi:10.1186/s40478-015-0199-x

    Article  Google Scholar 

  101. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science (80-) 216:136–144

  102. Radde R, Duma C, Goedert M, Jucker M (2008) The value of incomplete mouse models of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(Suppl 1):S70–S74

    Article  PubMed  CAS  Google Scholar 

  103. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T et al (2007) Reducing endogenous Tau ameliorates amyloid beta–Induced deficits in an Alzheimer’s disease mouse model. Science (80-) 316:750–754

  104. Ronnback A, Sagelius H, Bergstedt KD, Naslund J, Westermark GT, Winblad B et al (2012) Amyloid neuropathology in the single Arctic APP transgenic model affects interconnected brain regions. Neurobiol Aging 33:831.e11–831.e19. doi: 10.1016/j.neurobiolaging.2011.07.012

  105. Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A et al (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26

    Article  PubMed  CAS  Google Scholar 

  106. Rupp NJ, Wegenast-Braun BM, Radde R, Calhoun ME, Jucker M (2011) Early onset amyloid lesions lead to severe neuritic abnormalities and local, but not global neuron loss in APPPS1 transgenic mice. Neurobiol Aging 32:2324.e1–2324.e6. doi: 10.1016/j.neurobiolaging.2010.08.014

  107. Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S et al (2014) Single APP knock-in mouse models of Alzheimer’s disease. Nat Neurosci 17:661–663. doi:10.1038/nn.3697

    Article  PubMed  CAS  Google Scholar 

  108. Saito T, Suemoto T, Brouwers N, Sleegers K, Funamoto S, Mihira N et al (2011) Potent amyloidogenicity and pathogenicity of Aβ43. Nat Neurosci 14:1023–1032. doi:10.1038/nn.2858

    Article  PubMed  CAS  Google Scholar 

  109. Schmidt ML, Lee VM, Trojanowski JQ (1991) Comparative epitope analysis of neuronal cytoskeletal proteins in Alzheimer’s disease senile plaque, neurites and neuropil threads. Lab Invest 64:352–357

    PubMed  CAS  Google Scholar 

  110. Schneider K, Fangerau H, Michaelsen B, Raab WH-M (2008) The early history of the transmissible spongiform encephalopathies exemplified by scrapie. Brain Res Bull 77:343–355. doi:10.1016/j.brainresbull.2008.09.012

    Article  PubMed  Google Scholar 

  111. Schwab C, Steele JC, Akiyama H, McGeer EG, McGeer PL (1995) Relationship of amyloid β/A4 protein to the neurofibrillary tangles in Guamanian parkinsonism-dementia. Acta Neuropathol 90:287–298. doi:10.1007/BF00296513

    Article  PubMed  CAS  Google Scholar 

  112. Selkoe DJ, Bell DS, Podlisny MB, Price DL, Cork LC (1987) Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease. Science (80-) 235:873–877

  113. Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G, Saraiva MJM et al (2014) Nomenclature 2014: amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid 21:221–224. doi:10.3109/13506129.2014.964858

    Article  PubMed  Google Scholar 

  114. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4:49–60. doi:10.1038/nrn1007

    Article  PubMed  CAS  Google Scholar 

  115. St George-Hyslop PH (2000) Molecular genetics of Alzheimer’s disease. Biol Psychiatry 47:183–199

    Article  PubMed  CAS  Google Scholar 

  116. Stohr J, Condello C, Watts JC, Bloch L, Oehler A, Nick M et al (2014) Distinct synthetic Abeta prion strains producing different amyloid deposits in bigenic mice. Proc Natl Acad Sci USA 111:10329–10334. doi:10.1073/pnas.1408968111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S et al (2009) Gamma-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci 29:13042–13052. doi:10.1523/JNEUROSCI.2362-09.2009

    Article  PubMed  CAS  Google Scholar 

  119. Thal DR, Ghebremedhin E, Orantes M, Wiestler OD (2003) Vascular pathology in Alzheimer disease: correlation of cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline. J Neuropathol Exp Neurol 62:1287–1301

    PubMed  Google Scholar 

  120. Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  121. Thal DR, Walter J, Saido TC, Fändrich M (2015) Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer’s disease. Acta Neuropathol 129:167–182. doi:10.1007/s00401-014-1375-y

    Article  PubMed  CAS  Google Scholar 

  122. Vassar R, Kuhn P-H, Haass C, Kennedy ME, Rajendran L, Wong PC et al (2014) Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem 130:4–28. doi:10.1111/jnc.12715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Vlassenko AG, Mintun MA, Xiong C, Sheline YI, Goate AM, Benzinger TLS et al (2011) Amyloid-beta plaque growth in cognitively normal adults: longitudinal [11C] Pittsburgh compound B data. Ann Neurol 70:857–861. doi:10.1002/ana.22608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Walker LC, Bian F, Callahan MJ, Lipinski WJ, Durham RA, LeVine H (2002) Modeling Alzheimer’s disease and other proteopathies in vivo: is seeding the key? Amino Acids 23:87–93. doi:10.1007/s00726-001-0113-7

    Article  PubMed  CAS  Google Scholar 

  125. Walker LC, Callahan MJ, Bian F, Durham RZ, Roher AE, Lipinski WJ (2002) Exogenous induction of cerebral beta-amyloidosis in betaAPP-transgenic mice. Peptides 23:1241–1247

    Article  PubMed  CAS  Google Scholar 

  126. Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A et al (1999) Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952

    Article  PubMed  CAS  Google Scholar 

  127. Walsh DM, Selkoe DJ (2007) A beta oligomers: a decade of discovery. J Neurochem 101:1172–1184

    Article  PubMed  CAS  Google Scholar 

  128. Watts JC, Condello C, Stohr J, Oehler A, Lee J, DeArmond SJ et al (2014) Serial propagation of distinct strains of Abeta prions from Alzheimer’s disease patients. Proc Natl Acad Sci USA 111:10323–10328. doi:10.1073/pnas.1408900111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH et al (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22:1858–1867

    PubMed  CAS  Google Scholar 

  130. Willem M, Tahirovic S, Busche MA, Ovsepian SV, Chafai M, Kootar S et al (2015) η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 526:443–447. doi:10.1038/nature14864

    Article  PubMed  CAS  Google Scholar 

  131. Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VLJ et al (2015) A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci 16:564–574. doi:10.1038/nrn3983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F, Hoshi M et al (2015) Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol 22:499–505. doi:10.1038/nsmb.2991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Ye L, Fritschi SK, Schelle J, Obermüller U, Degenhardt K, Kaeser SA et al (2015) Persistence of Aβ seeds in APP null mouse brain. Nat Neurosci 18:1559–1561. doi:10.1038/nn.4117

    Article  PubMed  CAS  Google Scholar 

  134. Ye L, Hamaguchi T, Fritschi SK, Eisele YS, Obermuller U, Jucker M et al (2015) Progression of seed-induced abeta deposition within the limbic connectome. Brain Pathol 25:743–752. doi:10.1111/bpa.12252

    Article  PubMed  CAS  Google Scholar 

  135. Yetman MJ, Lillehaug S, Bjaalie JG, Leergaard TB, Jankowsky JL (2015) Transgene expression in the Nop-tTA driver line is not inherently restricted to the entorhinal cortex. Brain Struct Funct. doi:10.1007/s00429-015-1040-9

    PubMed  Google Scholar 

Download references

Acknowledgments

YSE is supported by a postdoctoral fellowship from the German Academic Exchange Service (DAAD). CD thanks Benoît Delatour, Marie-Claude Potier, Manon Thierry, the members of the Alzheimer-Prion team for useful discussions. Neuropathological studies of AD cases have been made possible thanks to the Brain Bank GIE NeuroCEB funded by the patients’ Associations France Alzheimer, France Parkinson, Foundation ARSEP, Comprendre les Syndromes Cérébelleux, IHU A-ICM and Fondation Plan Alzheimer. We are grateful to the patients and to their families. The help of Foundation Claude Pompidou and IHU A-ICM is also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yvonne S. Eisele or Charles Duyckaerts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisele, Y.S., Duyckaerts, C. Propagation of Aß pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 131, 5–25 (2016). https://doi.org/10.1007/s00401-015-1516-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-015-1516-y

Keywords

Navigation