Skip to main content
Log in

Biomechanics of vertebral compression fractures and clinical application

  • Basic Science
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Local biomechanical factors in the etiology of vertebral compression fractures are reviewed. The vertebral body is particularly vulnerable to compression fracture when its bone mineral density (BMD) falls with age. However, the risk of fracture, and the type of fracture produced, does not depend simply on BMD. Equally important is the state of degeneration of the adjacent intervertebral discs, which largely determines how compressive forces are distributed over the vertebral body. Disc height also influences load-sharing between the vertebral body and neural arch, and hence by Wolff’s Law can influence regional variations in trabecular density within the vertebral body. Vertebral deformity is not entirely attributable to trauma: it can result from the gradual accumulation of fatigue damage, and can progress by a quasi-continuous process of “creep”. Cement injection techniques such as vertebroplasty and kyphoplasty are valuable in the treatment of these fractures. Both techniques can stiffen a fractured vertebral body, and kyphoplasty may contribute towards restoring its height. The presence of cement can limit endplate deformation, and thereby partially reverse the adverse changes in load-sharing which follow vertebral fracture. Cement also reduces time-dependent “creep” deformation of damaged vertebrae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  1. Melton LJ 3rd, Riggs BL, Achenbach SJ, Amin S, Camp JJ, Rouleau PA et al (2006) Does reduced skeletal loading account for age-related bone loss? J Bone Miner Res 21(12):1847–1855

    Article  PubMed  Google Scholar 

  2. McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA 3rd (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am 67(8):1206–1214

    PubMed  CAS  Google Scholar 

  3. Eswaran SK, Gupta A, Adams MF, Keaveny TM (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21(2):307–314

    Article  PubMed  Google Scholar 

  4. Fazzalari NL, Parkinson IH, Fogg QA, Sutton-Smith P (2006) Antero-postero differences in cortical thickness and cortical porosity of T12 to L5 vertebral bodies. Joint Bone Spine 73(3):293–297

    Article  PubMed  Google Scholar 

  5. Hulme PA, Boyd SK, Ferguson SJ (2007) Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone 41(6):946–957

    Article  PubMed  CAS  Google Scholar 

  6. Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P (2009) Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 44(2):372–379

    Article  PubMed  Google Scholar 

  7. Banse X, Devogelaer JP, Munting E, Delloye C, Cornu O, Grynpas M (2001) Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone 28(5):563–571

    Article  PubMed  CAS  Google Scholar 

  8. Adams MA, Pollintine P, Tobias JH, Wakley GK, Dolan P (2006) Intervertebral disc degeneration can predispose to anterior vertebral fractures in the thoracolumbar spine. J Bone Miner Res 21(9):1409–1416

    Article  PubMed  Google Scholar 

  9. Roberts S, Menage J, Urban JP (1989) Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 14(2):166–174

    Article  PubMed  CAS  Google Scholar 

  10. Roberts S, McCall IW, Menage J, Haddaway MJ, Eisenstein SM (1997) Does the thickness of the vertebral subchondral bone reflect the composition of the intervertebral disc? Eur Spine J 6(6):385–389

    Article  PubMed  CAS  Google Scholar 

  11. Hou Y, Luo Z (2009) A study on the structural properties of the lumbar endplate: histological structure, the effect of bone density, and spinal level. Spine (Phila Pa 1976) 34(12):E427–E433

    Article  Google Scholar 

  12. Adams MA, Green TP, Dolan P (1994) The strength in anterior bending of lumbar intervertebral discs. Spine 19(19):2197–2203

    Article  PubMed  CAS  Google Scholar 

  13. Green TP, Adams MA, Dolan P (1993) Tensile properties of the annulus fibrosus. Part II ultimate tensile strength and fatigue life. Eur Spine J 2:209–214

    Article  PubMed  CAS  Google Scholar 

  14. Setton LA, Zhu W, Weidenbaum M, Ratcliffe A, Mow VC (1993) Compressive properties of the cartilaginous end-plate of the baboon lumbar spine. J Orthop Res 11(2):228–239

    Article  PubMed  CAS  Google Scholar 

  15. Green TP, Allvey JC, Adams MA (1994) Spondylolysis. Bending of the inferior articular processes of lumbar vertebrae during simulated spinal movements. Spine 19(23):2683–2691

    PubMed  CAS  Google Scholar 

  16. Adams MA, Dolan P, Hutton WC (1988) The lumbar spine in backward bending. Spine 13(9):1019–1026

    Article  PubMed  CAS  Google Scholar 

  17. Adams MA, Bogduk N, Burton K, Dolan P (2006) The biomechanics of back pain, 2nd edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  18. Adams MA, Hutton WC (1980) The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. J Bone Joint Surg Br 62(3):358–362

    PubMed  CAS  Google Scholar 

  19. Schendel MJ, Wood KB, Buttermann GR, Lewis JL, Ogilvie JW (1993) Experimental measurement of ligament force, facet force, and segment motion in the human lumbar spine. J Biomech 26(4–5):427–438

    Article  PubMed  CAS  Google Scholar 

  20. Dunlop RB, Adams MA, Hutton WC (1984) Disc space narrowing and the lumbar facet joints. J Bone Joint Surg Br 66(5):706–710

    PubMed  CAS  Google Scholar 

  21. Pollintine P, Przybyla AS, Dolan P, Adams MA (2004) Neural arch load-bearing in old and degenerated spines. J Biomech 37(2):197–204

    Article  PubMed  CAS  Google Scholar 

  22. Adams MA, McNally DS, Chinn H, Dolan P (1994) Posture and the compressive strength of the lumbar spine. Clin Biomech 9:5–14

    Article  Google Scholar 

  23. McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17(1):66–73

    Article  PubMed  CAS  Google Scholar 

  24. McMillan DW, McNally DS, Garbutt G, Adams MA (1996) Stress distributions inside intervertebral discs: the validity of experimental “stress profilometry”. Proc Inst Mech Eng H 210(2):81–87

    Article  PubMed  CAS  Google Scholar 

  25. Chu JY, Skrzypiec D, Pollintine P, Adams MA (2008) Can compressive stress be measured experimentally within the annulus fibrosus of degenerated intervertebral discs? Proc Inst Mech Eng H 222(2):161–170

    PubMed  CAS  Google Scholar 

  26. Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78(6):965–972

    Article  PubMed  CAS  Google Scholar 

  27. Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24(23):2468–2474

    Article  PubMed  CAS  Google Scholar 

  28. Adams MA, May S, Freeman BJ, Morrison HP, Dolan P (2000) Effects of backward bending on lumbar intervertebral discs. Relevance to physical therapy treatments for low back pain. Spine 25(4):431–437 discussion 438

    Article  PubMed  CAS  Google Scholar 

  29. Dolan P, Earley M, Adams MA (1994) Bending and compressive stresses acting on the lumbar spine during lifting activities. J Biomech 27(10):1237–1248

    Article  PubMed  CAS  Google Scholar 

  30. Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3(4):184–201

    Article  PubMed  CAS  Google Scholar 

  31. Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJd (1991) Classification of vertebral fractures. J Bone Miner Res 6(3):207–215

    Article  PubMed  CAS  Google Scholar 

  32. Perey O (1957) Fracture of the vertebral endplate. A biomechanical investigation. Acta Orthop Scand (Supp 25)

  33. Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine 14(6):606–610

    Article  PubMed  CAS  Google Scholar 

  34. Hutton WC, Adams MA (1982) Can the lumbar spine be crushed in heavy lifting? Spine 7(6):586–590

    Article  PubMed  CAS  Google Scholar 

  35. Yoganandan N, Larson SJ, Gallagher M, Pintar FA, Reinartz J, Droese K (1994) Correlation of microtrauma in the lumbar spine with intraosseous pressures. Spine 19(4):435–440

    Article  PubMed  CAS  Google Scholar 

  36. Jiang G, Luo J, Pollintine P, Dolan P, Adams MA, Eastell R (2010) Vertebral fractures in the elderly may not always be “osteoporotic”. Bone 47(1):111–116

    Article  PubMed  CAS  Google Scholar 

  37. Holmes AD, Hukins DW, Freemont AJ (1993) End-plate displacement during compression of lumbar vertebra-disc-vertebra segments and the mechanism of failure. Spine 18(1):128–135

    Article  PubMed  CAS  Google Scholar 

  38. Brinckmann P, Frobin W, Hierholzer E, Horst M (1983) Deformation of the vertebral end-plate under axial loading of the spine. Spine 8(8):851–856

    Article  PubMed  CAS  Google Scholar 

  39. Hansson T, Roos B (1983) The amount of bone mineral and Schmorl’s nodes in lumbar vertebrae. Spine 8(3):266–271

    Article  PubMed  CAS  Google Scholar 

  40. Hilton RC, Ball J, Benn RT (1976) Vertebral end-plate lesions (Schmorl’s nodes) in the dorsolumbar spine. Ann Rheum Dis 35(2):127–132

    Article  PubMed  CAS  Google Scholar 

  41. Twomey L, Taylor J (1985) Age changes in lumbar intervertebral discs. Acta Orthop Scand 56(6):496–499

    Article  PubMed  CAS  Google Scholar 

  42. Mok FP, Samartzis D, Karppinen J, Luk KD, Fong DY, Cheung KM (2010) ISSLS prize winner: prevalence, determinants, and association of Schmorl nodes of the lumbar spine with disc degeneration: a population-based study of 2449 individuals. Spine (Phila Pa 1976) 35(21):1944–1952

    Article  Google Scholar 

  43. Rao RD, Singrakhia MD (2003) Painful osteoporotic vertebral fracture. Pathogenesis, evaluation, and roles of vertebroplasty and kyphoplasty in its management. J Bone Joint Surg Am 85-A(10):2010–2022

    PubMed  Google Scholar 

  44. Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66(3):397–402

    PubMed  CAS  Google Scholar 

  45. Turner CH, Takano Y, Owan I (1995) Aging changes mechanical loading thresholds for bone formation in rats. J Bone Miner Res 10(10):1544–1549

    Article  PubMed  CAS  Google Scholar 

  46. Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW (1998) Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 13(12):1805–1813

    Article  PubMed  CAS  Google Scholar 

  47. Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P (2000) Mechanical initiation of intervertebral disc degeneration. Spine 25(13):1625–1636

    Article  PubMed  CAS  Google Scholar 

  48. Yoganandan N, Myklebust JB, Wilson CR, Cusick JF, Sances A Jr (1988) Functional biomechanics of the thoracolumbar vertebral cortex. Clin Biomech 3:11–18

    Article  Google Scholar 

  49. Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3(2):163–175

    Article  PubMed  CAS  Google Scholar 

  50. Myers ER, Wilson SE (1997) Biomechanics of osteoporosis and vertebral fracture. Spine 22(24 Suppl):25S–31S

    Article  PubMed  CAS  Google Scholar 

  51. Zioupos P, Hansen U, Currey JD (2008) Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. J Biomech 41(14):2932–2939

    Article  PubMed  Google Scholar 

  52. Brinckmann P, Biggemann M, Hilweg D (1988) Fatigue fracture of human lumbar vertebrae. Clin Biomech 3 (Suppl 1)

  53. Hansson TH, Keller TS, Spengler DM (1987) Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. J Orthop Res 5(4):479–487 (published erratum appears in J Orthop Res 1988;6(3):465)

    Article  PubMed  CAS  Google Scholar 

  54. Liu YK, Njus G, Buckwalter J, Wakano K (1983) Fatigue response of lumbar intervertebral joints under axial cyclic loading. Spine 8(8):857–865

    Article  PubMed  CAS  Google Scholar 

  55. Vernon-Roberts B, Pirie CJ (1973) Healing trabecular microfractures in the bodies of lumbar vertebrae. Ann Rheum Dis 32(5):406–412

    Article  PubMed  CAS  Google Scholar 

  56. Currey JD (1965) Anelasticity in bone and echinoderm skeletons. J Exp Biol 43:279–292

    Google Scholar 

  57. Mercer C, He MY, Wang R, Evans AG (2006) Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Acta Biomater 2(1):59–68

    Article  PubMed  CAS  Google Scholar 

  58. Yamamoto E, Paul Crawford R, Chan DD, Keaveny TM (2006) Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels. J Biomech 39(10):1812–1818

    Article  PubMed  Google Scholar 

  59. Pollintine P, Luo J, Offa-Jones B, Dolan P, Adams MA (2009) Bone creep can cause progressive vertebral deformity. Bone 45(3):466–472

    Article  PubMed  Google Scholar 

  60. Luo J, Pollintine P, Dolan P, Adams MA (2011) Accelerated "creep" deformation of human vertebrae. Presented to the International Society for the Study of the Lumbar Spine, Gothenburg, Sweden

  61. Luo J, Skrzypiec DM, Pollintine P, Adams MA, Annesley-Williams DJ, Dolan P (2007) Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration. Bone 40(4):1110–1119

    Article  PubMed  CAS  Google Scholar 

  62. Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser C, van Landuyt P (2001) Augmentation of mechanical properties in osteoporotic vertebral bones—a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J 10(2):164–171

    Article  PubMed  CAS  Google Scholar 

  63. Pitton MB, Koch U, Drees P, Duber C (2009) Midterm follow-up of vertebral geometry and remodeling of the vertebral bidisk unit (VDU) after percutaneous vertebroplasty of osteoporotic vertebral fractures. Cardiovasc Intervent Radiol 32(5):1004–1010

    Article  PubMed  Google Scholar 

  64. Luo J, Daines L, Charalambous A, Adams MA, Annesley-Williams DJ, Dolan P (2009) Vertebroplasty: only small cement volumes are required to normalize stress distributions on the vertebral bodies. Spine (Phila Pa 1976) 34(26):2865–2873

    Article  Google Scholar 

  65. Luo J, Bertram W, Sangar D, Adams MA, Annesley-Williams DJ, Dolan P (2010) Is kyphoplasty better than vertebroplasty in restoring normal mechanical function to an injured spine? Bone 46:1050–1057

    Article  PubMed  Google Scholar 

  66. Hulme PA, Krebs J, Ferguson SJ, Berlemann U (2006) Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine 31(17):1983–2001

    Article  PubMed  Google Scholar 

  67. Adams MA, Dolan P, McNally DS (2009) The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biol 28(7):384–389

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, M.A., Dolan, P. Biomechanics of vertebral compression fractures and clinical application. Arch Orthop Trauma Surg 131, 1703–1710 (2011). https://doi.org/10.1007/s00402-011-1355-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-011-1355-9

Keywords

Navigation