Skip to main content
Log in

Periprosthetic joint infection rates across primary total hip arthroplasty surgical approaches: a systematic review and meta-analysis of 653,633 procedures

  • Hip Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Evidence demonstrates comparable clinical outcomes across the various surgical approaches to primary total hip arthroplasty (THA). However, high-quality contemporary data regarding periprosthetic joint infection (PJI) risk between direct anterior approach (DAA) and other (THA) approaches is lacking. This systematic review and meta-analysis evaluated PJI rates reported in the literature between the DAA and other approaches.

Materials and methods

Five online databases were queried for all studies published from January 1st, 2000 through February 17th, 2021 that reported PJI rates between DAA and other surgical approaches. Studies reporting on primary THAs for osteoarthritis (OA) and that included PJI rates segregated by surgical approach were included. Articles reporting on revision THA, alternative THA etiologies, or minimally invasive techniques were excluded. Mantel–Haenszel (M–H) models were utilized to evaluate the pooled effect of surgical approach on infection rates. Validated risk of bias and methodological quality assessment tools were applied to each study. Multiple sensitivity analyses were conducted to evaluate the robustness of analyses.

Results

28 articles reporting on 653,633 primary THAs were included. No differences were found between DAA cohorts and combined other approaches (OR: 0.95; 95% CI 0.74–1.21; p = 0.67) as well as segregated anterolateral approach cohorts (OR: 0.82, 95% CI 0.64–1.06; p = 0.13). However, DAA patients had a significantly reduced risk of infection compared to those undergoing posterior (OR: 0.66, 95% CI 0.58–0.74; p < 0.0001) and direct lateral (OR: 0.56, 95% CI 0.48–0.65; p < 0.00001) approaches.

Conclusion

The DAA to primary THA had comparable or lower PJI risk when compared to other contemporary approaches. The results of the most up-to-date evidence available serve to encourage adult reconstruction surgeons who have already adopted the DAA. Additionally, orthopaedic surgeons considering adoption or use of the direct anterior approach for other reasons should not be dissuaded over theoretical concern for a general increase in the risk of PJI.

Level of Evidence

Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bozic KJ, Kurtz SM, Lau E et al (2009) The epidemiology of revision total hip arthroplasty in the united states. J Bone Jt Surg Ser A 91:128–133. https://doi.org/10.2106/JBJS.H.00155

    Article  Google Scholar 

  2. Pivec R, Johnson AJ, Mears SC, Mont MA (2012) Hip arthroplasty. In: The Lancet. Lancet, pp 1768–1777

  3. Lenguerrand E, Whitehouse MR, Beswick AD et al (2018) Risk factors associated with revision for prosthetic joint infection after hip replacement: a prospective observational cohort study. Lancet Infect Dis 18:1004–1014. https://doi.org/10.1016/S1473-3099(18)30345-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Henderson RA, Austin MS (2017) Management of periprosthetic joint infection: the more we learn, the less we know. J Arthroplasty 32:2056–2059. https://doi.org/10.1016/j.arth.2017.02.023

    Article  PubMed  Google Scholar 

  5. Senneville E, Joulie D, Legout L et al (2011) Outcome and predictors of treatment failure in total hip/knee prosthetic joint infections due to Staphylococcus aureus. Clin Infect Dis 53:334–340. https://doi.org/10.1093/cid/cir402

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marculescu CE, Berbari EF, Hanssen AD et al (2006) Outcome of prosthetic joint infections treated with debridement and retention of components. Clin Infect Dis 42:471–478. https://doi.org/10.1086/499234

    Article  CAS  PubMed  Google Scholar 

  7. Lentino JR (2003) Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis 36:1157–1161. https://doi.org/10.1086/374554

    Article  PubMed  Google Scholar 

  8. Peel TN, Dowsey MM, Buising KL et al (2013) Cost analysis of debridement and retention for management of prosthetic joint infection. Clin Microbiol Infect 19:181–186. https://doi.org/10.1111/J.1469-0691.2011.03758.X

    Article  CAS  PubMed  Google Scholar 

  9. Kapadia BH, Banerjee S, Cherian JJ et al (2016) The economic impact of periprosthetic infections after total hip arthroplasty at a specialized tertiary-care center. J Arthroplasty 31:1422–1426. https://doi.org/10.1016/j.arth.2016.01.021

    Article  PubMed  Google Scholar 

  10. Gundtoft PH, Pedersen AB, Varnum C, Overgaard S (2017) Increased mortality after prosthetic joint infection in primary THA. Clin Orthop Relat Res 475:2623–2631. https://doi.org/10.1007/s11999-017-5289-6

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zmistowski B, Karam JA, Durinka JB et al (2013) Periprosthetic joint infection increases the risk of one-year mortality. J Bone Jt Surgery Am 95:2177–2184. https://doi.org/10.2106/JBJS.L.00789

    Article  Google Scholar 

  12. Parisi TJ, Konopka JF, Bedair HS (2017) What is the long-term economic societal effect of periprosthetic infections after THA? A markov analysis. Clin Orthop Relat Res 475:1891–1900. https://doi.org/10.1007/s11999-017-5333-6

    Article  PubMed  PubMed Central  Google Scholar 

  13. Garfield K, Noble S, Lenguerrand E et al (2020) What are the inpatient and day case costs following primary total hip replacement of patients treated for prosthetic joint infection: a matched cohort study using linked data from the National Joint Registry and Hospital Episode Statistics. BMC Med 18:335. https://doi.org/10.1186/s12916-020-01803-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kurtz SM, Lau EC, Son MS et al (2018) are we winning or losing the battle with periprosthetic joint infection: trends in periprosthetic joint infection and mortality risk for the medicare population. J Arthroplasty 33:3238–3245. https://doi.org/10.1016/j.arth.2018.05.042

    Article  PubMed  Google Scholar 

  15. Dale H, Høvding P, Tveit SM et al (2020) Increasing but levelling out risk of revision due to infection after total hip arthroplasty: a study on 108,854 primary THAs in the Norwegian Arthroplasty Register from 2005 to 2019. Acta Orthop. https://doi.org/10.1080/17453674.2020.1851533

    Article  PubMed  PubMed Central  Google Scholar 

  16. Smith JO, Frampton CMA, Hooper GJ, Young SW (2018) The impact of patient and surgical factors on the rate of postoperative infection after total hip arthroplasty—a New Zealand joint registry study. J Arthroplasty 33:1884–1890. https://doi.org/10.1016/j.arth.2018.01.021

    Article  PubMed  Google Scholar 

  17. Bozic KJ, Lau E, Kurtz S et al (2012) Patient-related risk factors for periprosthetic joint infection and postoperative mortality following total hip arthroplasty in medicare patients. J Bone Jt Surgery-American 94:794–800. https://doi.org/10.2106/JBJS.K.00072

    Article  Google Scholar 

  18. (MAC) MAC, (2020) Risk factors for periprosthetic joint infection following primary total hip arthroplasty: a 15-year, population-based cohort study. J Bone Jt Surg - Am 102:503–509. https://doi.org/10.2106/JBJS.19.00537

    Article  Google Scholar 

  19. Charney M, Paxton EW, Stradiotto R et al (2020) A comparison of risk of dislocation and cause-specific revision between direct anterior and posterior approach following elective cementless total hip arthroplasty. J Arthroplasty 35:1651–1657. https://doi.org/10.1016/j.arth.2020.01.033

    Article  PubMed  Google Scholar 

  20. Aggarwal VK, Weintraub S, Klock J, et al (2019) 2019 Frank Stinchfield Award: A comparison of prosthetic joint infection rates between direct anterior and non-anterior approach total hip arthroplasty. In: Bone and Joint Journal. British Editorial Society of Bone and Joint Surgery, pp 2–8

  21. O’Connor CM, Anoushiravani AA, Acosta E et al (2021) Direct anterior approach total hip arthroplasty is not associated with increased infection rates. JBJS Rev 9(e20):00047. https://doi.org/10.2106/jbjs.rvw.20.00047

    Article  PubMed  Google Scholar 

  22. Abdel MP, Berry DJ (2019) Current practice trends in primary hip and knee arthroplasties among members of the american association of hip and knee surgeons: a long-term update. J Arthroplasty 34:S24–S27. https://doi.org/10.1016/j.arth.2019.02.006

    Article  PubMed  Google Scholar 

  23. Chechik O, Khashan M, Lador R et al (2013) Surgical approach and prosthesis fixation in hip arthroplasty world wide. Arch Orthop Trauma Surg 133:1595–1600. https://doi.org/10.1007/s00402-013-1828-0

    Article  PubMed  Google Scholar 

  24. Kyriakopoulos G, Poultsides L, Christofilopoulos P (2018) Total hip arthroplasty through an anterior approach: The pros and cons. EFORT Open Rev 3:574–583. https://doi.org/10.1302/2058-5241.3.180023

    Article  PubMed  PubMed Central  Google Scholar 

  25. Woolson ST (2020) A survey of Hip Society surgeons concerning the direct anterior approach total hip arthroplasty. In: Bone and Joint Journal. British Editorial Society of Bone and Joint Surgery, pp 57–61

  26. Pincus D, Jenkinson R, Paterson M et al (2020) Association between surgical approach and major surgical complications in patients undergoing total hip arthroplasty. JAMA J Am Med Assoc 323:1070–1076. https://doi.org/10.1001/jama.2020.0785

    Article  Google Scholar 

  27. Hoskins W, Bingham R, Lorimer M et al (2020) Early rate of revision of total hip arthroplasty related to surgical approach: an analysis of 122,345 primary total hip arthroplasties. J Bone Joint Surg Am 102:1874–1882. https://doi.org/10.2106/JBJS.19.01289

    Article  PubMed  Google Scholar 

  28. Sprowls GR, Allen BC, Lundquist KF et al (2020) Incision site fat thickness and 90-day complications for direct anterior and posterior approach total hip arthroplasty. HIP Int. https://doi.org/10.1177/1120700020977166

    Article  PubMed  Google Scholar 

  29. Buchalter DB, Teo GM, Kirby DJ, et al (2020) Surgical Approach to Total Hip Arthroplasty Affects the Organism Profile of Early Periprosthetic Joint Infections. JBJS Open Access 5:e20.00111–e20.00111. https://doi.org/10.2106/jbjs.oa.20.00111

  30. Siljander MP, Whaley JD, Koueiter DM et al (2020) Length of stay, discharge disposition, and 90-day complications and revisions following primary total hip arthroplasty: a comparison of the direct anterior, posterolateral, and direct superior approaches. J Arthroplasty 35:1658–1661. https://doi.org/10.1016/j.arth.2020.01.082

    Article  PubMed  Google Scholar 

  31. Shohat N, Goswami K, Clarkson S et al (2021) Direct anterior approach to the hip does not increase the risk for subsequent periprosthetic joint infection. J Arthroplasty. https://doi.org/10.1016/j.arth.2021.02.016

    Article  PubMed  Google Scholar 

  32. Palan J, Beard DJ, Murray DW et al (2009) Which approach for total hip arthroplasty: Anterolateral or posterior? Clin Orthop Relat Res 467:473–477. https://doi.org/10.1007/s11999-008-0560-5

    Article  PubMed  Google Scholar 

  33. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) PRISMA Checklist. https://doi.org/10.1371/journal.pmed1000097

  34. Tissot C, Vautrin M, Luyet A, Borens O (2018) Are there more wound complications or infections with direct anterior approach total hip arthroplasty? HIP Int 28:591–598. https://doi.org/10.1177/1120700018759617

    Article  PubMed  Google Scholar 

  35. Mjaaland KE, Kivle K, Svenningsen S, Nordsletten L (2019) Do Postoperative results differ in a randomized trial between a direct anterior and a direct lateral approach in THA? Clin Orthop Relat Res 477:145–155. https://doi.org/10.1097/CORR.0000000000000439

    Article  PubMed  Google Scholar 

  36. Ilchmann T, Zimmerli W, Bolliger L et al (2016) Risk of infection in primary, elective total hip arthroplasty with direct anterior approach or lateral transgluteal approach: a prospective cohort study of 1104 hips. BMC Musculoskelet Disord 17:1–6. https://doi.org/10.1186/s12891-016-1332-0

    Article  Google Scholar 

  37. Triantafyllopoulos GK, Memtsoudis SG, Wang H et al (2019) Surgical approach does not affect deep infection rate after primary total hip arthroplasty. HIP Int 29:597–602. https://doi.org/10.1177/1120700018825237

    Article  PubMed  Google Scholar 

  38. Aggarwal VK, Elbuluk A, Dundon J et al (2019) Surgical approach significantly affects the complication rates associated with total hip arthroplasty. Bone Jt J 101B:646–651. https://doi.org/10.1302/0301-620X.101B6.BJJ-2018-1474.R1

    Article  Google Scholar 

  39. Angerame MR, Fehring TK, Masonis JL et al (2018) Early failure of primary total hip arthroplasty: is surgical approach a risk factor? J Arthroplasty 33:1780–1785. https://doi.org/10.1016/j.arth.2018.01.014

    Article  PubMed  Google Scholar 

  40. Purcell RL, Parks NL, Cody JP, Hamilton WG (2018) Comparison of wound complications and deep infections with direct anterior and posterior approaches in obese hip arthroplasty patients. J Arthroplasty 33:220–223. https://doi.org/10.1016/j.arth.2017.07.047

    Article  PubMed  Google Scholar 

  41. Malek IA, Royce G, Bhatti SU et al (2016) A comparison between the direct anterior and posterior approaches for total hip arthroplasty. Bone Joint J 98-B:754–760. https://doi.org/10.1302/0301-620X.98B6.36608

    Article  CAS  PubMed  Google Scholar 

  42. Christensen CP, Karthikeyan T, Jacobs CA (2014) Greater prevalence of wound complications requiring reoperation with direct anterior approach total hip arthroplasty. J Arthroplasty 29:1839–1841. https://doi.org/10.1016/j.arth.2014.04.036

    Article  PubMed  Google Scholar 

  43. Eto S, Hwang K, Huddleston JI et al (2017) The direct anterior approach is associated with early revision total hip arthroplasty. J Arthroplasty 32:1001–1005. https://doi.org/10.1016/j.arth.2016.09.012

    Article  PubMed  Google Scholar 

  44. Hart A, Wyles CC, Abdel MP et al (2019) Thirty-day major and minor complications following total hip arthroplasty—a comparison of the direct anterior, lateral, and posterior approaches. J Arthroplasty 34:2681–2685. https://doi.org/10.1016/j.arth.2019.06.046

    Article  PubMed  Google Scholar 

  45. Watts CD, Houdek MT, Wagner ER et al (2015) High risk of wound complications following direct anterior total hip arthroplasty in obese patients. J Arthroplasty 30:2296–2298. https://doi.org/10.1016/j.arth.2015.06.016

    Article  PubMed  Google Scholar 

  46. Sheth D, Cafri G, Inacio MCS et al (2015) Anterior and anterolateral approaches for tha are associated with lower dislocation risk without higher revision risk. Clin Orthop Relat Res 473:3401–3408. https://doi.org/10.1007/s11999-015-4230-0

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jelsma J, Pijnenburg R, Boons HW et al (2017) Limited benefits of the direct anterior approach in primary hip arthroplasty: A prospective single centre cohort study. J Orthop 14:53–58. https://doi.org/10.1016/j.jor.2016.10.025

    Article  PubMed  Google Scholar 

  48. Ponzio DY, Poultsides LA, Salvatore A et al (2018) In-hospital morbidity and postoperative revisions after direct anterior vs posterior total hip arthroplasty. J Arthroplasty 33:1421-1425.e1. https://doi.org/10.1016/j.arth.2017.11.053

    Article  PubMed  Google Scholar 

  49. Tsukada S, Wakui M (2015) Lower dislocation rate following total hip arthroplasty via direct anterior approach than via posterior approach: five-year-average follow-up results. Open Orthop J 9:157–162. https://doi.org/10.2174/1874325001509010157

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rykov K, Reininga IHF, Sietsma MS et al (2017) Posterolateral vs direct anterior approach in total hip arthroplasty (POLADA Trial): a randomized controlled trial to assess differences in serum markers. J Arthroplasty 32:3652-3658.e1. https://doi.org/10.1016/j.arth.2017.07.008

    Article  PubMed  Google Scholar 

  51. Zijlstra WP, De Hartog B, Van Steenbergen LN et al (2017) Effect of femoral head size and surgical approach on risk of revision for dislocation after total hip arthroplasty: An analysis of 166,231 procedures in the Dutch Arthroplasty Register (LROI). Acta Orthop 88:395–401. https://doi.org/10.1080/17453674.2017.1317515

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sterne JA, Hernán MA, Reeves BC et al (2016) ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ. https://doi.org/10.1136/bmj.i4919

    Article  PubMed  PubMed Central  Google Scholar 

  53. Slim K, Nini E, Forestier D et al (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73:712–716. https://doi.org/10.1046/j.1445-2197.2003.02748.x

    Article  PubMed  Google Scholar 

  54. Öhlin A, Karlsson L, Senorski EH et al (2019) Quality assessment of prospective cohort studies evaluating arthroscopic treatment for femoroacetabular impingement syndrome: a systematic review. Orthop J Sport Med. https://doi.org/10.1177/2325967119838533

    Article  Google Scholar 

  55. Sterne JAC, Savović J, Page MJ et al (2019) RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ. https://doi.org/10.1136/bmj.l4898

    Article  PubMed  PubMed Central  Google Scholar 

  56. Detsky AS, Naylor CD, O’Rourke K et al (1992) Incorporating variations in the quality of individual randomized trials into meta-analysis. J Clin Epidemiol 45:255–265. https://doi.org/10.1016/0895-4356(92)90085-2

    Article  CAS  PubMed  Google Scholar 

  57. Sharma R, Farrokhyar F, McKnight LL et al (2011) Quality of assessment of randomized controlled trials in blood conservation after joint arthroplasty. J Arthroplasty 26:909–913. https://doi.org/10.1016/j.arth.2010.08.014

    Article  PubMed  Google Scholar 

  58. Cochrane Training Cochrane Handbook for Systematic Reviews of Interventions | Cochrane Training. https://training.cochrane.org/cochrane-handbook-systematic-reviews-interventions. Accessed 23 Feb 2021

  59. Miller LE, Gondusky JS, Kamath AF et al (2018) Influence of surgical approach on complication risk in primary total hip arthroplasty: Systematic review and meta-analysis. Acta Orthop 89:289–294. https://doi.org/10.1080/17453674.2018.1438694

    Article  PubMed  PubMed Central  Google Scholar 

  60. Esposito CI, Carroll KM, Sculco PK et al (2018) Total Hip Arthroplasty Patients With Fixed Spinopelvic Alignment Are at Higher Risk of Hip Dislocation. J Arthroplasty 33:1449–1454. https://doi.org/10.1016/j.arth.2017.12.005

    Article  PubMed  Google Scholar 

  61. Luthringer TA, Vigdorchik JM (2019) A preoperative workup of a “hip-spine” total hip arthroplasty patient: a simplified approach to a complex problem. J Arthroplasty 34:S57–S70. https://doi.org/10.1016/j.arth.2019.01.012

    Article  PubMed  Google Scholar 

  62. Yue C, Kang P, Pei F (2015) Comparison of direct anterior and lateral approaches in total hip arthroplasty: A systematic review and meta-analysis (PRISMA). Med (United States). https://doi.org/10.1097/MD.0000000000002126

    Article  PubMed Central  Google Scholar 

  63. DeCook CA (2019) Outpatient joint arthroplasty: transitioning to the ambulatory surgery center. J Arthroplasty 34:S48–S50. https://doi.org/10.1016/j.arth.2019.01.006

    Article  PubMed  Google Scholar 

  64. Jaibaji M, Volpin A, Haddad FS, Konan S (2020) Is outpatient arthroplasty safe? a systematic review. J Arthroplasty 35:1941–1949. https://doi.org/10.1016/j.arth.2020.02.022

    Article  PubMed  Google Scholar 

  65. Russo MW, Macdonell JR, Paulus MC et al (2015) Increased complications in obese patients undergoing direct anterior total hip arthroplasty. J Arthroplasty 30:1384–1387. https://doi.org/10.1016/j.arth.2015.03.002

    Article  PubMed  Google Scholar 

  66. Greco NJ, Lombardi AV, Morris MJ et al (2019) Direct anterior approach and perioperative fracture with a single-taper wedge femoral component. J Arthroplasty 34:145–150. https://doi.org/10.1016/j.arth.2018.09.003

    Article  PubMed  Google Scholar 

  67. Berend KR, Mirza AJ, Morris MJ, Lombardi AV (2016) Risk of periprosthetic fractures with direct anterior primary total hip arthroplasty. J Arthroplasty 31:2295–2298. https://doi.org/10.1016/j.arth.2016.03.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

No funding was received for our analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul F. Kamath.

Ethics declarations

Conflict of interest

A.F.K. reports the following disclosures: research support (Signature Orthopaedics), paid presenter or speaker (DePuy Synthes and Zimmer Biomet), paid consultant (DePuy Synthes and Zimmer Biomet), stock or stock options (Zimmer Biomet, Johnson & Johnson, and Procter & Gamble), IP royalties (Innomed), and board or committee member (AAOS, AAHKS, and Anterior Hip Foundation). J.E.O. reports the following disclosures: board or committee member (AAHKS), paid consultant (Depuy), and research support (DePuy). A.J.A., L.T.S., M.T.D., and D.G. have nothing to disclose.

Ethical approval/informed consent

Our analysis included de-identified information and therefore, IRB approval and patient consent were not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acuña, A.J., Do, M.T., Samuel, L.T. et al. Periprosthetic joint infection rates across primary total hip arthroplasty surgical approaches: a systematic review and meta-analysis of 653,633 procedures. Arch Orthop Trauma Surg 142, 2965–2977 (2022). https://doi.org/10.1007/s00402-021-04186-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04186-3

Keywords

Navigation