Skip to main content

Advertisement

Log in

MicroRNA31 and MMP-1 contribute to the differentiated pathway of invasion -with enhanced epithelial-to-mesenchymal transition- in squamous cell carcinoma of the skin

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Epithelial to mesenchymal transition (EMT) is an important mechanism of invasion in cutaneous squamous cell carcinomas (cSCCs) and has been found to be enhanced in tumors originated from actinic keratosis with transformation limited to the basal epithelial layer -differentiated pathway-, compared to cases with invasion subsequent to complete epidermal transformation -classical pathway-. Several microRNAs and proteins can contribute to EMT modulation in cSCCs. MicroRNA21 and microRNA31 are involved in posttranscriptional regulation of protein expression and could play a relevant role in EMT and cSCC progression. Throughout the EMT process upregulation of matrix metalloproteinases (MMPs) enhances invasiveness and MMP-1 and MMP-3 contribute to local invasion, angiogenesis and metastasis in cSCCs. Additionally, cSCC development is associated with PTEN loss and NF-κB, NOTCH-1 and p63 activation. The aim of this work is to identify differences in the expression of those molecules between both pathways of cSCCs development. Eight tissue microarrays from 80 consecutive cSCCs were analyzed using LNA-based miRNA in situ hybridization for miRNA21 and miRNA31 evaluation, and immunohistochemistry for MMP-1, MMP-3, PTEN, NOTCH-1, NF-κB, p63 and CD31. Significantly higher expression of miRNA31 (p < 0.0001) and MMP-1 (p = 0.0072) and angiogenesis (p = 0.0199) were found in the differentiated pathway, whereas PTEN loss (p = 0.0430) was more marked in the classical pathway. No significant differences were found for the other markers. Our findings support a contribution of miRNA31 and MMP-1 in the differentiated pathway, associated to EMT and increased microvascularization. The greater PTEN loss in the classical pathway indicate that its relevance in cSCC is not EMT-related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Materials and data are available for evaluation.

References

  1. Stratigos AJ, Garbe C, Dessinioti C et al (2020) European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: part 1. epidemiology, diagnostics and prevention. Eur J Cancer 128:60–82. https://doi.org/10.1016/j.ejca.2020.01.007

    Article  CAS  PubMed  Google Scholar 

  2. Sánchez-Danés A, Blanpain C (2018) Deciphering the cells of origin of squamous cell carcinomas. Nat Rev Cancer 18:549–561. https://doi.org/10.1038/s41568-018-0024-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leiter U, Keim U, Garbe C (2020) Epidemiology of skin cancer: update 2019. Adv Exp Med Biol 1268:123–139. https://doi.org/10.1007/978-3-030-46227-7_6

    Article  CAS  PubMed  Google Scholar 

  4. Skin Cancer Facts & Statistics. In: The Skin Cancer Foundation. https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/. Accessed 7 Dec 2020

  5. Dotto GP, Rustgi AK (2016) Squamous cell cancers: a unified perspective on biology and genetics. Cancer Cell 29:622–637. https://doi.org/10.1016/j.ccell.2016.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fernandez-Figueras M-T, Puig L (2020) The role of epithelial-to-mesenchymal transition in cutaneous squamous cell carcinoma: epithelial-to-mesenchymal transition in cutaneous SCC. Curr Treat Options Oncol 21:47. https://doi.org/10.1007/s11864-020-00735-x

    Article  PubMed  Google Scholar 

  7. Nowell CS, Radtke F (2017) Notch as a tumour suppressor. Nat Rev Cancer 17:145–159. https://doi.org/10.1038/nrc.2016.145

    Article  CAS  PubMed  Google Scholar 

  8. Krishnamurthy K, Lindsey AM, Estrada C-A et al (2020) Title—genomic landscape of squamous cell carcinoma—different genetic pathways culminating in a common phenotype. Cancer Treat Res Commun 25:100238. https://doi.org/10.1016/j.ctarc.2020.100238

    Article  PubMed  Google Scholar 

  9. Natsuizaka M, Whelan KA, Kagawa S et al (2017) Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nat Commun. https://doi.org/10.1038/s41467-017-01500-9

    Article  PubMed  PubMed Central  Google Scholar 

  10. Truchuelo MT, Jiménez N, Miguel-Gomez L et al (2017) Histological and immunohistochemical evaluation of the efficacy of a new cosmetic formulation in the treatment of skin photoaging. Dermatol Res Pract. https://doi.org/10.1155/2017/8407247

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gobin E, Bagwell K, Wagner J et al (2019) A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer 19:581. https://doi.org/10.1186/s12885-019-5768-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zinzindohoué F, Blons H, Hans S et al (2004) Single nucleotide polymorphisms in MMP1 and MMP3 gene promoters as risk factor in head and neck squamous cell carcinoma. Anticancer Res 24:2021–2026

    PubMed  Google Scholar 

  13. Lazo de la Vega L, Bick N, Hu K et al (2020) Invasive squamous cell carcinomas and precursor lesions on UV-exposed epithelia demonstrate concordant genomic complexity in driver genes. Mod Pathol 33:2280–2294. https://doi.org/10.1038/s41379-020-0571-7

    Article  CAS  PubMed  Google Scholar 

  14. Tsukifuji R, Tagawa K, Hatamochi A, Shinkai H (1999) Expression of matrix metalloproteinase-1, -2 and -3 in squamous cell carcinoma and actinic keratosis. Br J Cancer 80:1087–1091. https://doi.org/10.1038/sj.bjc.6690468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng L-Q, Wang R, Chi S-M, Li C-X (2019) Matrix metalloproteinase 1: a better biomarker for squamous cell carcinoma by multiple microarray analyses. G Ital Dermatol Venereol 154:327–337. https://doi.org/10.23736/S0392-0488.17.05770-4

    Article  PubMed  Google Scholar 

  16. Prasad NB, Fischer AC, Chuang AY et al (2014) Differential expression of degradome components in cutaneous squamous cell carcinomas. Mod Pathol 27:945–957. https://doi.org/10.1038/modpathol.2013.217

    Article  CAS  PubMed  Google Scholar 

  17. McCawley LJ, Wright J, LaFleur BJ et al (2008) Keratinocyte expression of MMP3 enhances differentiation and prevents tumor establishment. Am J Pathol 173:1528–1539. https://doi.org/10.2353/ajpath.2008.080132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moses MA, George AL, Sakakibara N et al (2019) Molecular mechanisms of p63-mediated squamous cancer pathogenesis. Int J Mol Sci. https://doi.org/10.3390/ijms20143590

    Article  PubMed  PubMed Central  Google Scholar 

  19. Missero C, Antonini D (2017) p63 in squamous cell carcinoma of the skin: more than a stem cell/progenitor marker. J Investig Dermatol 137:280–281. https://doi.org/10.1016/j.jid.2016.10.032

    Article  CAS  PubMed  Google Scholar 

  20. Stacy AJ, Craig MP, Sakaram S, Kadakia M (2017) ΔNp63α and microRNAs: leveraging the epithelial-mesenchymal transition. Oncotarget 8:2114–2129. https://doi.org/10.18632/oncotarget.13797

    Article  PubMed  Google Scholar 

  21. Robinson DJ, Patel A, Purdie KJ et al (2019) Epigenetic regulation of iASPP-p63 feedback loop in cutaneous squamous cell carcinoma. J Invest Dermatol 139:1658-1671.e8. https://doi.org/10.1016/j.jid.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  22. Smirnov A, Anemona L, Novelli F et al (2019) p63 is a promising marker in the diagnosis of unusual skin cancer. Int J Mol Sci 20:5781. https://doi.org/10.3390/ijms20225781

    Article  CAS  PubMed Central  Google Scholar 

  23. Conde E, Angulo B, Redondo P et al (2010) The use of P63 immunohistochemistry for the identification of squamous cell carcinoma of the lung. PLoS ONE. https://doi.org/10.1371/journal.pone.0012209

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chikh A, Matin RNH, Senatore V et al (2011) iASPP/p63 autoregulatory feedback loop is required for the homeostasis of stratified epithelia. EMBO J 30:4261–4273. https://doi.org/10.1038/emboj.2011.302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oh J-E, Kim RH, Shin K-H et al (2011) DeltaNp63α protein triggers epithelial-mesenchymal transition and confers stem cell properties in normal human keratinocytes. J Biol Chem 286:38757–38767. https://doi.org/10.1074/jbc.M111.244939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pires BRB, Mencalha AL, Ferreira GM et al (2017) NF-kappaB Is involved in the regulation of EMT genes in breast cancer cells. PLoS ONE 12:e0169622. https://doi.org/10.1371/journal.pone.0169622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D’Ignazio L, Bandarra D, Rocha S (2016) NF-κB and HIF crosstalk in immune responses. FEBS J 283:413–424. https://doi.org/10.1111/febs.13578

    Article  CAS  PubMed  Google Scholar 

  28. Tam SY, Wu VWC, Law HKW (2020) Hypoxia-induced epithelial-mesenchymal transition in cancers: HIF-1α and beyond. Front Oncol. https://doi.org/10.3389/fonc.2020.00486

    Article  PubMed  PubMed Central  Google Scholar 

  29. An X, Xu G, Yang L et al (2014) Expression of hypoxia-inducible factor-1α, vascular endothelial growth factor and prolyl hydroxylase domain protein 2 in cutaneous squamous cell carcinoma and precursor lesions and their relationship with histological stages and clinical features. J Dermatol 41:76–83. https://doi.org/10.1111/1346-8138.12314

    Article  CAS  PubMed  Google Scholar 

  30. Kim C, Pasparakis M (2014) Epidermal p65/NF-κB signalling is essential for skin carcinogenesis. EMBO Mol Med 6:970–983. https://doi.org/10.15252/emmm.201303541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lai K, Luo C, Zhang X et al (2016) Regulation of angiogenin expression and epithelial-mesenchymal transition by HIF-1α signaling in hypoxic retinal pigment epithelial cells. Biochim Biophys Acta 1862:1594–1607. https://doi.org/10.1016/j.bbadis.2016.05.023

    Article  CAS  PubMed  Google Scholar 

  32. Brash DE (2015) UV signature mutations. Photochem Photobiol 91:15–26. https://doi.org/10.1111/php.12377

    Article  CAS  PubMed  Google Scholar 

  33. Willenbrink TJ, Ruiz ES, Cornejo CM et al (2020) Field cancerization: definition, epidemiology, risk factors, and outcomes. J Am Acad Dermatol 83:709–717. https://doi.org/10.1016/j.jaad.2020.03.126

    Article  CAS  PubMed  Google Scholar 

  34. Fernández-Figueras MT, Carrato C, Sáenz X et al (2015) Actinic keratosis with atypical basal cells (AK I) is the most common lesion associated with invasive squamous cell carcinoma of the skin. J Eur Acad Dermatol Venereol 29:991–997. https://doi.org/10.1111/jdv.12848

    Article  PubMed  Google Scholar 

  35. Dasgupta S, Ewing-Graham PC, Swagemakers SMA et al (2020) Precursor lesions of vulvar squamous cell carcinoma—histology and biomarkers: a systematic review. Crit Rev Oncol Hematol 147:102866. https://doi.org/10.1016/j.critrevonc.2020.102866

    Article  PubMed  Google Scholar 

  36. Arsenic R, Kurrer MO (2013) Differentiated dysplasia is a frequent precursor or associated lesion in invasive squamous cell carcinoma of the oral cavity and pharynx. Virchows Arch 462:609–617. https://doi.org/10.1007/s00428-013-1412-6

    Article  PubMed  Google Scholar 

  37. Wasserman JK, Bateman J, Mai KT (2016) Differentiated squamous intraepithelial neoplasia associated with squamous cell carcinoma of the anal canal. Histopathology 68:834–842. https://doi.org/10.1111/his.12874

    Article  PubMed  Google Scholar 

  38. Wils LJ, Poell JB, Evren I et al (2020) Incorporation of differentiated dysplasia improves prediction of oral leukoplakia at increased risk of malignant progression. Mod Pathol 33:1033–1040. https://doi.org/10.1038/s41379-019-0444-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saenz-Sardà X, Carrato C, Pérez-Roca L et al (2018) Epithelial-to-mesenchymal transition contributes to invasion in squamous cell carcinomas originated from actinic keratosis through the differentiated pathway, whereas proliferation plays a more significant role in the classical pathway. J Eur Acad Dermatol Venereol 32:581–586. https://doi.org/10.1111/jdv.14514

    Article  CAS  PubMed  Google Scholar 

  40. Kashyap MP, Sinha R, Mukhtar MS, Athar M (2020) Epigenetic regulation in the pathogenesis of non-melanoma skin cancer. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2020.11.009

    Article  PubMed  Google Scholar 

  41. Lu J, Tan T, Zhu L et al (2020) Hypomethylation causes MIR21 overexpression in tumors. Mol Ther Oncolytics 18:47–57. https://doi.org/10.1016/j.omto.2020.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sannigrahi MK, Sharma R, Panda NK, Khullar M (2018) Role of non-coding RNAs in head and neck squamous cell carcinoma: a narrative review. Oral Dis 24:1417–1427. https://doi.org/10.1111/odi.12782

    Article  CAS  PubMed  Google Scholar 

  43. Liu Z, Jin Z-Y, Liu C-H et al (2015) MicroRNA-21 regulates biological behavior by inducing EMT in human cholangiocarcinoma. Int J Clin Exp Pathol 8:4684–4694

    PubMed  PubMed Central  Google Scholar 

  44. D’Souza W, Kumar A (2020) microRNAs in oral cancer: Moving from bench to bed as next generation medicine. Oral Oncol 111:104916. https://doi.org/10.1016/j.oraloncology.2020.104916

    Article  CAS  PubMed  Google Scholar 

  45. Mahmood N, Hanif M, Ahmed A et al (2019) Circulating miR-21 as a prognostic and predictive biomarker in oral squamous cell carcinoma. Pak J Med Sci 35:1408–1412. https://doi.org/10.12669/pjms.35.5.331

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bourguignon LYW, Bikle D (2015) Selective hyaluronan-CD44 signaling promotes miRNA-21 expression and interacts with vitamin D function during cutaneous squamous cell carcinomas progression following UV irradiation. Front Immunol 6:224. https://doi.org/10.3389/fimmu.2015.00224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bruegger C, Kempf W, Spoerri I et al (2013) MicroRNA expression differs in cutaneous squamous cell carcinomas and healthy skin of immunocompetent individuals. Exp Dermatol 22:426–428. https://doi.org/10.1111/exd.12153

    Article  CAS  PubMed  Google Scholar 

  48. Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A et al (2020) The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol Ther Nucleic Acids 20:409–420. https://doi.org/10.1016/j.omtn.2020.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang A, Landén NX, Meisgen F et al (2014) MicroRNA-31 is overexpressed in cutaneous squamous cell carcinoma and regulates cell motility and colony formation ability of tumor cells. PLoS ONE 9:e103206. https://doi.org/10.1371/journal.pone.0103206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Laurila EM, Kallioniemi A (2013) The diverse role of miR-31 in regulating cancer associated phenotypes. Genes Chromosomes Cancer 52:1103–1113. https://doi.org/10.1002/gcc.22107

    Article  CAS  PubMed  Google Scholar 

  51. Sun S-S, Zhou X, Huang Y-Y et al (2015) Targeting STAT3/miR-21 axis inhibits epithelial-mesenchymal transition via regulating CDK5 in head and neck squamous cell carcinoma. Mol Cancer 14:213. https://doi.org/10.1186/s12943-015-0487-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang N, Li Y, Zhou J (2017) miR-31 functions as an oncomir which promotes epithelial-mesenchymal transition via regulating BAP1 in cervical cancer. Biomed Res Int. https://doi.org/10.1155/2017/6361420

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rock AN, Fisher MD, Amborski G et al (2020) MicroRNA expression profiling of cutaneous squamous cell carcinomas arising in different sites. Otolaryngol Head Neck Surg. https://doi.org/10.1177/0194599820918855

    Article  PubMed  Google Scholar 

  54. Li W, Yu N, Fan L et al (2020) Circ_0063517 acts as ceRNA, targeting the miR-31-5p-ETBR axis to regulate angiogenesis of vascular endothelial cells in preeclampsia. Life Sci 244:117306. https://doi.org/10.1016/j.lfs.2020.117306

    Article  CAS  PubMed  Google Scholar 

  55. Yan S, Xu Z, Lou F et al (2015) NF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nat Commun 6:7652. https://doi.org/10.1038/ncomms8652

    Article  PubMed  Google Scholar 

  56. Chen I-P, Bender M, Spassova I et al (2020) UV-type specific alteration of miRNA expression and its association with tumor progression and metastasis in SCC cell lines. J Cancer Res Clin Oncol 146:3215–3231. https://doi.org/10.1007/s00432-020-03358-9

    Article  CAS  PubMed  Google Scholar 

  57. Bowen KA, Doan HQ, Zhou BP et al (2009) PTEN loss induces epithelial-mesenchymal transition in human colon cancer cells. Anticancer Res 29:4439–4449

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Martin P, Liu Y-N, Pierce R et al (2011) Prostate epithelial Pten/TP53 loss leads to transformation of multipotential progenitors and epithelial to mesenchymal transition. Am J Pathol 179:422–435. https://doi.org/10.1016/j.ajpath.2011.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mriouah J, Boura C, Gargouri M et al (2014) PTEN expression is involved in the invasive properties of HNSCC: a key protein to consider in locoregional recurrence. Int J Oncol 44:709–716. https://doi.org/10.3892/ijo.2013.2219

    Article  CAS  PubMed  Google Scholar 

  60. Gevariya N, Lachance G, Robitaille K et al (2020) Omega-3 eicosapentaenoic acid reduces prostate tumor vascularity. Mol Cancer Res. https://doi.org/10.1158/1541-7786.MCR-20-0316

    Article  PubMed  Google Scholar 

  61. Kuperstock JE, Gedik R, Horný M et al (2020) Differences in female and male-to-female transgender facial skin micro-vessel density. Facial Plast Surg Aesthet Med. https://doi.org/10.1089/fpsam.2020.0065

    Article  PubMed  Google Scholar 

  62. Pang J-M, Jene N, Fox SB (2016) Assessing tumor angiogenesis in histological samples. Methods Mol Biol 1430:3–33. https://doi.org/10.1007/978-1-4939-3628-1_1

    Article  CAS  PubMed  Google Scholar 

  63. Plasmeijer EI, Sachse MM, Gebhardt C et al (2019) Cutaneous squamous cell carcinoma (cSCC) and immunosurveillance—the impact of immunosuppression on frequency of cSCC. J Eur Acad Dermatol Venereol 33(Suppl 8):33–37. https://doi.org/10.1111/jdv.16025

    Article  PubMed  Google Scholar 

  64. Yu T, Ma P, Wu D et al (2018) Functions and mechanisms of microRNA-31 in human cancers. Biomed Pharmacother 108:1162–1169. https://doi.org/10.1016/j.biopha.2018.09.132

    Article  CAS  PubMed  Google Scholar 

  65. Wang F, Gao Y, Yuan Y et al (2020) MicroRNA-31 can positively regulate the proliferation, differentiation and migration of keratinocytes. BMH 5:1–12. https://doi.org/10.1159/000508612

    Article  CAS  Google Scholar 

  66. Wang L-L, Li H-X, Yang Y-Y et al (2018) MiR-31 is a potential biomarker for diagnosis of head and neck squamous cell carcinoma. Int J Clin Exp Pathol 11:4339–4345

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Peng Q-S, Cheng Y-N, Zhang W-B et al (2020) circRNA_0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR-31 to inhibit Hippo signaling pathway. Cell Death Dis 11:112. https://doi.org/10.1038/s41419-020-2273-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee E, Pandey NB, Popel AS (2015) Crosstalk between cancer cells and blood endothelial and lymphatic endothelial cells in tumour and organ microenvironment. Expert Rev Mol Med 17:e3. https://doi.org/10.1017/erm.2015.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mahfouf W, Hosseini M, Muzotte E et al (2019) Loss of epidermal HIF-1α blocks UVB-induced tumorigenesis by affecting DNA repair capacity and oxidative stress. J Invest Dermatol 139:2016-2028.e7. https://doi.org/10.1016/j.jid.2019.01.035

    Article  CAS  PubMed  Google Scholar 

  70. Meigel WN, Gay S, Weber L (1977) Dermal architecture and collagen type distribution. Arch Derm Res 259:1–10. https://doi.org/10.1007/BF00562732

    Article  CAS  Google Scholar 

  71. Weiss MB, Abel EV, Mayberry MM et al (2012) TWIST1 is an ERK1/2 effector that promotes invasion and regulates MMP-1 expression in human melanoma cells. Cancer Res 72:6382–6392. https://doi.org/10.1158/0008-5472.CAN-12-1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang K, Zheng J, Yu J et al (2020) Knockdown of MMP-1 inhibits the progression of colorectal cancer by suppressing the PI3K/Akt/c-myc signaling pathway and EMT. Oncol Rep 43:1103–1112. https://doi.org/10.3892/or.2020.7490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang Y, Zhong Z, Zhao Y et al (2019) LincRNA-SLC20A1 (SLC20A1) promotes extracellular matrix degradation in nucleus pulposus cells in human intervertebral disc degeneration by targeting the miR-31-5p/MMP3 axis. Int J Clin Exp Pathol 12:3632–3643

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Piipponen M, Nissinen L, Riihilä P et al (2020) p53-regulated long noncoding RNA PRECSIT promotes progression of cutaneous squamous cell carcinoma via STAT3 signaling. Am J Pathol 190:503–517. https://doi.org/10.1016/j.ajpath.2019.10.019

    Article  CAS  PubMed  Google Scholar 

  75. Chen Z, Trotman LC, Shaffer D et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730. https://doi.org/10.1038/nature03918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. He Y-Y, Pi J, Huang J-L et al (2006) Chronic UVA irradiation of human HaCaT keratinocytes induces malignant transformation associated with acquired apoptotic resistance. Oncogene 25:3680–3688. https://doi.org/10.1038/sj.onc.1209384

    Article  CAS  PubMed  Google Scholar 

  77. Gong Z-H, Zhou F, Shi C et al (2019) miRNA-221 promotes cutaneous squamous cell carcinoma progression by targeting PTEN. Cell Mol Biol Lett 24:9. https://doi.org/10.1186/s11658-018-0131-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen H, Wang X, Chen Y et al (2019) Pten loss in Lgr5+ hair follicle stem cells promotes SCC development. Theranostics 9:8321–8331. https://doi.org/10.7150/thno.35467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wäster P, Eriksson I, Vainikka L, Öllinger K (2020) Extracellular vesicles released by melanocytes after UVA irradiation promote intercellular signaling via miR21. Pigment Cell Melanoma Res. https://doi.org/10.1111/pcmr.12860

    Article  PubMed  Google Scholar 

  80. García-Sancha N, Corchado-Cobos R, Pérez-Losada J, Cañueto J (2019) MicroRNA dysregulation in cutaneous squamous cell carcinoma. Int J Mol Sci. https://doi.org/10.3390/ijms20092181

    Article  PubMed  PubMed Central  Google Scholar 

  81. South AP, Purdie KJ, Watt SA et al (2014) NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis. J Invest Dermatol 134:2630–2638. https://doi.org/10.1038/jid.2014.154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nagarajan P, Asgari MM, Green AC et al (2019) Keratinocyte carcinomas: current concepts and future research priorities. Clin Cancer Res 25:2379–2391. https://doi.org/10.1158/1078-0432.CCR-18-1122

    Article  PubMed  Google Scholar 

  83. Watt SA, Purdie KJ, den Breems NY et al (2015) Novel CARD11 mutations in human cutaneous squamous cell carcinoma lead to aberrant NF-κB regulation. Am J Pathol 185:2354–2363. https://doi.org/10.1016/j.ajpath.2015.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Das Mahapatra K, Pasquali L, Søndergaard JN et al (2020) A comprehensive analysis of coding and non-coding transcriptomic changes in cutaneous squamous cell carcinoma. Sci Rep 10:3637. https://doi.org/10.1038/s41598-020-59660-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hanna J, Hossain GS, Kocerha J (2019) The potential for microRNA therapeutics and clinical research. Front Genet 10:478. https://doi.org/10.3389/fgene.2019.00478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang W, Zhu Y, Zhou Y et al (2021) miRNA-31 increases radiosensitivity through targeting STK40 in colorectal cancer cells. Asia Pac J Clin Oncol. https://doi.org/10.1111/ajco.13602

    Article  PubMed  PubMed Central  Google Scholar 

  87. Anandappa G, Lampis A, Cunningham D et al (2019) Prospective analysis of microRNA 31–3p (miR31-3p) as a predictive biomarker of response to anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibodies (mABs) in patients with metastatic colorectal cancer (mCRC). JCO 37:548–548. https://doi.org/10.1200/JCO.2019.37.4_suppl.548

    Article  Google Scholar 

  88. Mlcochova J, Faltejskova-Vychytilova P, Ferracin M et al (2015) MicroRNA expression profiling identifies miR-31–5p/3p as associated with time to progression in wild-type RAS metastatic colorectal cancer treated with cetuximab. Oncotarget 6:38695–38704. https://doi.org/10.18632/oncotarget.5735

    Article  PubMed  PubMed Central  Google Scholar 

  89. Im K, Song J, Han YT et al (2017) Identification of aminosulfonylarylisoxazole as microRNA-31 regulators. PLoS ONE 12:e0182331. https://doi.org/10.1371/journal.pone.0182331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the excellent work of the Scientific and Technical Service of Immunohistochemistry, Lleida Institute for Biomedical Research Dr. Pifarré Foundation, IRBLleida, Hospital Universitari Arnau de Vilanova, Av. Alcalde Rovira Roure, 80, 25198, Lleida, Spain.

Funding

This research was funded by Leo Pharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Fernández-Figueras.

Ethics declarations

Conflict of interest

MTFF has perceived consultancy/speaker’s honoraria from Almirall and funding for this research from Leo Pharma.

Ethics approval

Tissue use was approved by the Biobank of the Fundació per la Investigació Germans Trias i Pujol and the research ethics committee of the Hospital Universitari Germans Trias i Pujol (No. PI-15–044).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Figueras, M.T., Carrato, C., Saenz-Sardà, X. et al. MicroRNA31 and MMP-1 contribute to the differentiated pathway of invasion -with enhanced epithelial-to-mesenchymal transition- in squamous cell carcinoma of the skin. Arch Dermatol Res 314, 767–775 (2022). https://doi.org/10.1007/s00403-021-02288-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-021-02288-x

Keywords

Navigation