Skip to main content

Advertisement

Log in

Biglycan enhances the ability of migration and invasion in endometrial cancer

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Objective

This study aimed to confirm that biglycan (BGN) can promote the migration and invasion in endometrial cancer both in vitro and in vivo and the possible therapeutic value of BGN in endometrial cancer.

Methods

Western blot was used to screen out the higher protein level of BGN in human endometrial cancer cells; BGN knocked down cells were constructed by lentiviral transfection; The effect of BGN in endometrial cancer detected by wound healing, transwell migration, and invasion, endothelial tube formation assay in vitro, and xenograft model in vivo.

Results

(1) We found that BGN expression level is higher in the Ishikawa (ISK, high differentiation) and AN3CA (poor differentiation) cells than other endometrial cancer cells. (2) BGN enhances endometrial cancer cell wound healing, invasion, and migration ability and formation ability of endothelial cells in vitro. Xenograft model has confirmed the outcome in vivo.

Conclusions

BGN might play an important role on metastasis in human endometrial cancer and it might be a target marker for the molecular therapy of advanced and recurrence endometrial cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z et al (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29

    Article  PubMed  Google Scholar 

  2. Loukovaara M, Luomaranta A, Leminen A (2013) Treatment of endometrial carcinoma. Duodecim; laaketieteellinen aikakauskirja 130(22–23):2348–2355

    Google Scholar 

  3. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(24):4195–4200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Weber CK, Sommer G, Michl P et al (2001) Biglycan is overexpressed in pancreatic cancer and induces G1-arrest in pancreatic cancer cell lines. Gastroenterology 121(3):657–667

    Article  CAS  PubMed  Google Scholar 

  5. Fisher LW, Heegaard AM, Vetter U et al (1991) Human biglycan gene. Putative promoter, intron-exon junctions, and chromosomal localization. J Biol Chem 266(22):14371–14377

    CAS  PubMed  Google Scholar 

  6. Wadhwa S, Embree MC, Bi Y et al (2004) Regulation, regulatory activities, and function of biglycan. Crit Rev Eukaryot Gene Expr 14(4):301–315

    Article  CAS  PubMed  Google Scholar 

  7. Gotte M, Feugaing DDS, Kresse H (2004) Biglycan is internalized via a chlorpromazine-sensitive route. Cell Mol Biol Lett 9(3):475–482

    PubMed  Google Scholar 

  8. Aprile G, Avellini C, Reni M et al (2013) Biglycan expression and clinical outcome in patients with pancreatic adenocarcinoma. Tumor Biology 34(1):131–137

    Article  CAS  PubMed  Google Scholar 

  9. Mikula M, Rubel T, Karczmarski J et al (2011) Integrating proteomic and transcriptomic high-throughput surveys for search of new biomarkers of colon tumors. Funct Integr Genomics 11(2):215–224

    Article  CAS  Google Scholar 

  10. Pan S, Cheng L, White JT et al (2009) Quantitative proteomics analysis integrated with microarray data reveals that extracellular matrix proteins, catenins, and p53 binding protein 1 are important for chemotherapy response in ovarian cancers. OMICS 13(4):345–354

    Article  CAS  PubMed  Google Scholar 

  11. Nishino R, Honda M, Yamashita T et al (2008) Identification of novel candidate tumour marker genes for intrahepatic cholangiocarcinoma. J Hepatol 49(2):207–216

    Article  CAS  PubMed  Google Scholar 

  12. Hu L, Duan Y, Li J et al (2014) Biglycan enhances gastric cancer invasion by activating FAK signaling pathway. Oncotarget 5(7):1885

    Article  PubMed Central  PubMed  Google Scholar 

  13. Liu Y, Li W, Li X et al (2014) Expression and significance of biglycan in endometrial cancer. Arch Gynecol Obstet 289(3):649–655

    Article  CAS  PubMed  Google Scholar 

  14. Zhu YH, Yang F, Zhang SS et al (2013) High expression of biglycan is associated with poor prognosis in patients with esophageal squamous cell carcinoma. Int J Clin Exp Pathol 6(11):2497

    PubMed Central  PubMed  Google Scholar 

  15. Jaeger J, Koczan D, Thiesen HJ et al (2007) Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clinical cancer research 13(3):806–815

  16. Niedworok C, Röck K, Kretschmer I et al (2013) Inhibitory role of the small leucine-rich proteoglycan biglycan in bladder cancer. PLoS One 8(11):e80084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Merline R, Moreth K, Beckmann J et al (2011) Signaling by the matrix proteoglycan decorin controls inflammation and cancer through PDCD4 and MicroRNA-21. Science Signaling 4(199):ra75–ra75

  18. Chen WB, Lenschow W, Tiede K et al (2002) Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-β in pancreatic tumor cells. J Biol Chem 277(39):36118–36128

    Article  CAS  PubMed  Google Scholar 

  19. Li Q (2014) Transforming growth factor β signaling in uterine development and function. J Animal Sci Biotechnol 5(1):52

    Article  Google Scholar 

  20. Loomans HA, Andl CD (2014) Intertwining of activin a and TGF-β signaling: dual roles in cancer progression and cancer cell invasion. Cancers 7(1):70–91

    Article  PubMed Central  PubMed  Google Scholar 

  21. Brown S, Teo A, Pauklin S et al (2011) Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells 29(8):1176–1185

    Article  CAS  PubMed  Google Scholar 

  22. Jones KL, de Kretser DM, Patella S et al (2004) Activin A and follistatin in systemic inflammation. Mol Cell Endocrinol 225(1):119–125

    Article  CAS  PubMed  Google Scholar 

  23. Faure S, Lee MA, Keller T et al (2000) Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development 127(13):2917–2931

    CAS  PubMed  Google Scholar 

  24. Burdette JE, Jeruss JS, Kurley SJ et al (2005) Activin A mediates growth inhibition and cell cycle arrest through Smads in human breast cancer cells. Cancer Res 65(17):7968–7975

    CAS  PubMed  Google Scholar 

  25. Galamb O, Sipos F, Spisák S et al (2009) Potential biomarkers of colorectal adenoma–dysplasia–carcinoma progression: mRNA expression profiling and in situ protein detection on TMAs reveal 15 sequentially upregulated and 2 downregulated genes. Anal Cell Pathol 31(1):19–29

    CAS  Google Scholar 

  26. Gallagher J (2007) Messages in the matrix: proteoglycans go the distance. Dev Cell 13(2):166–167

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto K, Ohga N, Hida Y et al (2012) Biglycan is a specific marker and an autocrine angiogenic factor of tumour endothelial cells. Br J Cancer 106(6):1214–1223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Yamamoto K, Ohga N, Hida Y et al (2012) Biglycan is a specific marker and an autocrine angiogenic factor of tumour endothelial cells. Br J Cancer 106(6):1214–1223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Berendsen AD, Pinnow EL, Maeda A et al (2014) Biglycan modulates angiogenesis and bone formation during fracture healing. Matrix Biol 35:223–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Schaefer L, Babelova A, Kiss E et al (2005) The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. Journal of Clinical Investigation 115(8):2223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Babelova A, Moreth K, Tsalastra-Greul W et al (2009) Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem 284(36):24035–24048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Tufvesson E, Westergren-Thorsson G (2003) Biglycan and decorin induce morphological and cytoskeletal changes involving signalling by the small GTPases RhoA and Rac1 resulting in lung fibroblast migration. J Cell Sci 116(23):4857–4864

    Article  CAS  PubMed  Google Scholar 

  33. Theocharis AD, Skandalis SS, Neill T et al (2015) Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer

  34. Schaefer L, Beck KF, Raslik I et al (2003) Biglycan, a nitric oxide-regulated gene, affects adhesion, growth, and survival of mesangial cells. J Biol Chem 278(28):26227–26237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly funded by the National Natural Science Foundation of China [81072121, 81372808 (J.J.)] and [81173614 (Q.T.L)], and was also partly funded by the Science and Technology Development planning of Shandong [2012G0021823 (J.J)] and [2011GSF12122 (X.Z and J.J)] and the Technology Developing Planning of Jinan (201303035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Jiang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest with other people or organizations. All authors have contributed significantly to this work and are in agreement with the content of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Wang, X., Zhang, Y. et al. Biglycan enhances the ability of migration and invasion in endometrial cancer. Arch Gynecol Obstet 293, 429–438 (2016). https://doi.org/10.1007/s00404-015-3844-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-015-3844-5

Keywords

Navigation