Skip to main content

Advertisement

Log in

Variability of fitting parameters across cochlear implant centres

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Objective

As a follow-up to the studies by Vaerenberg et al. (Sci World J 501738:1–12, 2014) and Browning et al. (Cochlear Implant Int 21(3):1–13, 2020), who used questionnaires, we determined whether there are between-centre variations in the fitting of cochlear implants by analysing the methodology, fitting parameters and hearing results of patients from four centres with real data. The purpose of this study is to highlight the lack of streamlined mapping guides and outcome measures with respect to cochlear implant (CI) fittings.

Methods

A retrospective study with ninety-seven post-lingual adults with a nucleus cochlear implant placed between 2003 and 2013 was included to ensure at least 5 years of follow-up.

The studied data were as follows: the methodology, including the fitter’s professional background, the method of activation, the sequence of fitting sessions, the objectives measures and hearing outcomes; and the fitting parameters, including the speech processors, programming strategy, stimulation mode, T and C levels, T-SPL and C-SPL, maxima, pulse width, loudness growth and hearing results.

Results

This investigation highlights some common practices across professionals and CI centres: the activation of a CI is behavioural; impedances are systematically measured at each fitting; and some parameters are rarely modified. However, there are also differences, either between centres, such as the sequences of fitting sessions (p < 0.05) or their approach to spectral bands (p < 0.05), or even within centres, such as the policy regarding T and C levels at high frequencies compared to those at low and mid-frequencies.

Conclusion

There are important variations between and within centres that reflect a lack of CI-related policies and outcome measures in the fitting of CI.

Clinical trials registry

NCT03700268

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tokita J, Dunn C, Hansen MR (2014) Cochlear implantation and single sided deafness. CurrOpinOtolaryngol Head Neck Surg 22(5):353–358

    Google Scholar 

  2. Ramos Macías A, Falcón González JC, Manrique M et al (2015) Cochlear implants as a treatment option for unilateral hearing loss severe tinnitus and hyperacusis. AudiolNeurotol 20(1):60–66

    Google Scholar 

  3. Servais J, Hörmann K, Wallhäusser-Franke E (2017) Unilateral cochlear implantation reduces tinnitus loudness in bimodal hearing: a prospective study. Front Neurol 7(8):60

    Google Scholar 

  4. Hughes ML (2013) Objective measures in cochlear implants. Plural Publishing, San Diego

    Google Scholar 

  5. Wolfe J, Schafer E (2015) Programming cochlear implants, 2nd edn. Plural Publishing, San Diego

    Google Scholar 

  6. Rader T, Doms P, Adel Y et al (2018) A method for determining precise electrical hearing thresholds in cochlear implant users. Int J Audiol 57(7):502–509

    Article  Google Scholar 

  7. Fielden CA, Kitterick PT (2016) Contralateral acoustic hearing aid use in adult unilateral cochlear implant recipients : current provision, practice, and clinical experience in the UK. Cochlear Implants Int 17(3):132–145

    Article  Google Scholar 

  8. Rossi-Katz J, Arehart KH (2011) Survey of audiological service provision to older adults with cochlear implants. Am J Audiol 20(2):84–89

    Article  Google Scholar 

  9. Vaerenberg B, Smits C, De Ceulaer G et al (2014) Cochlear implant programming: a global survey on the state of the art. Sci World J 501738:1–12

    Google Scholar 

  10. Siburt HW, Holmes AE (2015) Bimodal programming: a survey of current clinical practice. Am J Audiol 24(2):243–249

    Article  Google Scholar 

  11. Browning LM, Nie Y, Rout A, Heiner M (2020) Audiologists’s preferences in programming cochlear implants: a preliminary report. Cochlear Implants Int 21(3):1–13

    Google Scholar 

  12. Battmer RD, Borel S, Brendel M et al (2014) Assessment of “Fitting to Outcomes Expert” FOXTM with new cochlear implant users in a multi-center study. Cochlear Implants Int 16(2):100–109

    Article  Google Scholar 

  13. Skinner MW, Holden LK, Holden TA et al (1995) Comparison of procedures for obtaining thresholds and maximum acceptable loudness levels with the nucleus cochlear implant system. J Speech Hear Res 38(3):677–689

    Article  CAS  Google Scholar 

  14. Botros A, Psarros C (2010) Neural response telemetry reconsidered: I The relevance of ECAP threshold profiles and scaled profiles to cochlear implant fitting. Ear Hear 31(3):367–379

    Article  Google Scholar 

  15. Carvalho B, Hamerschmidt R, Wiemes G (2015) Intraoperative neural response telemetry and neural recovery function: a comparative study between adults and children. Int Arch Otorhinolaryngol 19(1):10–15

    PubMed  Google Scholar 

  16. Greisiger R, Shallop JK, Hol PK et al (2015) Cochlear implantees: Analysis of behavioral and objective measures for a clinical population of various age groups. Cochlear Implants Int 16(4):1–19

    Article  Google Scholar 

  17. Stephan K, Welzl-Müller K (2000) Post-operative stapedius reflex tests with simultaneous loudness scaling in patients supplied with cochlear implants. Audiology 39(1):13–18

    Article  CAS  Google Scholar 

  18. Philippon D, Bergeron FF, Ferron P et al (2010) Cochlear Implantation in postmeningitic deafness. OtolNeurotol 31(1):83–87

    Google Scholar 

  19. Cresson D (2016) Les fréquences dans l’audio, à quoi ça correspond?. https://blog.eavs-groupe.com/actualite-de-nos-metiers/frequences-laudio-ca-correspond-a-quoi/

  20. Mewes A, Hey M (2017) Einfluss der T Level auf das Sprachverstehen in Ruhe und im Störschall bei erwachsenen CI-Patienten. Conference Paper, 20 Jahrestagung der Deutschen Gesellschaft fu¨ r Audiologie

  21. Leone CA, Mosca F, Grassia R (2017) Temporal changes in impedance of implanted adults for various cochlear segments. ActaOtorhinolaryngol Ital 37:312–319

    Article  CAS  Google Scholar 

  22. Chen JK, Chuang AY, Sprinzl GM et al (2013) Impedance and electrically evoked compound action potential (ECAP) drop within 24 hours after cochlear implantation. PLoS ONE 26(8):1–10

    CAS  Google Scholar 

  23. Chen JK, Chuang AY, Sprinzl GM et al (2015) Safety and feasibility of initial frequency mapping within 24 hours after cochlear implantation. Actaotolaryngol 135(6):592–599

    Google Scholar 

  24. Hagr A, GaradatAl-Momani SN et al (2015) Feasibility of one-day activation in cochlear implant recipients. Int J Audiol 54(5):323–331

    Article  Google Scholar 

  25. Sun CH, Chang CJ, Hsu CJ et al (2019) Feasibility of early activation after cochlear implantation. ClinOtolaryngol 44(6):1004–1010

    Google Scholar 

  26. Busby PA, Arora K (2016) Effects of threshold adjustment on speech perception in nucleus cochlear implant recipients. Ear Hear 37(3):303–311

    Article  Google Scholar 

  27. Skinner MW, Holden LK, Holden TA et al (1999) Comparison of two methods for selecting minimum stimulation levels used in programming the Nucleus 22. Cochlear Implant J Speech Hear Res 42(4):814–828

    Article  CAS  Google Scholar 

  28. Firszt JB, Holden LK, Skinner MW et al (2004) Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems. Ear Hear 25(4):375–387

    Article  Google Scholar 

  29. Holden LK, Reeder RM, Firszt JB et al (2011) Optimizing the perception of soft speech and speech in noise with the advanced bionics cochlear implant system. Int J Audiol 50(4):255–269

    Article  Google Scholar 

  30. Plesch J, Ernst BP, Strieth S et al (2019) A psychoacoustic application for the adjustment of electrical hearing thresholds in cochlear implant patients. PLoS ONE 14(10):1–17

    Article  Google Scholar 

  31. Govaerts PJ, Vaerenberg B, De Ceulaer G et al (2010) Development of a software tool using deterministic logic for the optimization of cochlear implant processor programming. OtolNeurotol 31(6):908–918

    Google Scholar 

  32. Vaerenberg B, Govaerts PJ, De Ceulaer G et al (2011) Experiences of the use of FOX, an intelligent agent, for programming cochlear implant sound processors in new users. Int J Audiol 50(1):50–58

    Article  Google Scholar 

  33. Bermejo I, Diez FJ, Govaerts PJ et al (2013) A probabilistic graphical model for tuning cochlear implants. In: Peek N, Marin Morales R, Peleg M (eds) Artificial intelligence in medicine. Springer, Berlin, pp 150–155

    Chapter  Google Scholar 

  34. Wathour J, Teunen M, Pascoal D, Deggouj N, Govaerts PJ (2016) L’implant cochléaire avant l’âge d’un an : données quantitatives et qualitatives. Rééducation orthophonique no 268

  35. Wathour J, Govaerts PJ, Deggouj N (2019) From manual to artificial intelligence fitting: two cochlear implant case studies. Cochlear Implants Int 17:1–7

    Google Scholar 

  36. Waltzman SB, Kelsall DC (2020) The use of artificial intelligence to program cochlear implant. OtolNeurotol 41(4):452–457

    Google Scholar 

  37. Meeuws M, Pascoal D, Janssens de Varebeke S, De Ceulaer G, Govaerts PJ (2020) Cochlear implant telemedicine: remote fitting based on psychoacoustic self-tests and artificial intelligence. Cochlear Implants Int 13:1–9

    Google Scholar 

  38. Lenarz T (2018) Cochlear implant: state of the art. GMS current topics in otorhinolaryngology. Head Neck Surg 16:1–29

    Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justine Wathour.

Ethics declarations

Conflict of interest

Authors JW and ND report no conflict of interest relevant to this article. Author PG owns intellectual property rights in FOX® and has royalty benefits related to this product.

Ethics approval

This study was approved by the local ethical review board (hospital St-Luc – B403201734403).

Human/Animal rights

Retrospective study—this study involves data analysis.

Informed consent

Retrospective study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wathour, J., Govaerts, P.J. & Deggouj, N. Variability of fitting parameters across cochlear implant centres. Eur Arch Otorhinolaryngol 278, 4671–4679 (2021). https://doi.org/10.1007/s00405-020-06572-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-020-06572-w

Navigation