Skip to main content
Log in

On the history of the Euclidean Steiner tree problem

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

The history of the Euclidean Steiner tree problem, which is the problem of constructing a shortest possible network interconnecting a set of given points in the Euclidean plane, goes back to Gergonne in the early nineteenth century. We present a detailed account of the mathematical contributions of some of the earliest papers on the Euclidean Steiner tree problem. Furthermore, we link these initial contributions with results from the recent literature on the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Quoted in an unpublished paper by P. J. H. Piñeyro: “Gergonne; the isoperimetric problem and the Steiners symmetrization”, January 2012.

  2. This appears to be the same sequence as the number of trivially fully gated graphs on \(n\) nodes (Colbourn and Huybrechts 2008); however, the equivalence between these two sequences is still to be established.

  3. It was thought by a number of sources, such as (Kupitz and Martini 1997, p. 101), that the Steiner tree problem had been rediscovered and discussed by Lamé and Clapeyron in 1827 or 1829 in the paper (Lamé and Clapeyron 1829). It is clear, however, from the 1989 paper of Franksen and Grattan-Guiness (1989), which includes a complete translation of Lamé and Clapeyron (1829), that although Lamé and Clapeyron studied a number of generalisations of the Fermat–Torricelli problem, they did not work on any problem that was equivalent to the Steiner tree problem.

  4. Personal record on Karl Bopp obtained from Research Library for the History of Education at the German Institute for International Educational Research (http://bbf.dipf.de).

  5. Personal record on Eduard Hoffmann obtained from Research Library for the History of Education at the German Institute for International Educational Research (http://bbf.dipf.de).

  6. There were at least four earlier papers citing (Jarník and Kössler 1934), mostly in the Czech mathematical literature; however, none of these papers deal directly with the Euclidean Steiner Tree problem.

  7. In particular, Denes König’s seminal textbook on graph theory, “Theorie der Endlichen und Unendlichen Graphen” was not published until 1936, two years after this paper.

  8. In a private communication, when asked why he worked on the minimum spanning tree and Steiner tree problems, Choquet simply replied that when he was young he worked on all kinds of different problems (and that he had nothing more to contribute on these two problems).

  9. This, in fact, corrects a mistake made by Menger (1931), who attempted to establish the same result using minimum spanning trees. It is unknown whether Choquet was aware of Menger’s work.

  10. Kupitz and Martini (1997) argue that this dismissal of the generalised Fermat–Torricelli problem is based on a misreading of Steiner’s paper in pages 729–731 of Steiner (1882).

  11. This is according to one of Melzak’s students, Raymond Booth, in a private communication.

References

  • Arora, S. 1998. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45(5): 753–782.

    Article  MATH  MathSciNet  Google Scholar 

  • Beardwoord, J., J.H. Halton, and J.M. Hammersley. 1959. The shortest path through many points. Proceedings of Cambridge Philosophical Society 55: 299–327.

    Article  Google Scholar 

  • Bopp, K. 1879. Üeber das kürzeste Verbindungssystem zwischen vier Punkten. PhD thesis, Universität Göttingen.

  • Cavalieri, B. 1647. Exercitationes Geometricae Sex.

  • Cavalli-Sforza, L.L., and A.W.F. Edwards. 1967. Phylogenetic analysis: Models and estimation procedures. Evolution 21: 550–570.

    Article  Google Scholar 

  • Cheng, X., Y. Li, D.Z. Du, and H.Q. Ngo. 2004. Steiner trees in industry. In Handbook of combinatorial optimization, vol. 5, ed. D.Z. Du, and P.M. Pardalos, 193–216. Dordrecht: Kluwer.

    Google Scholar 

  • Choquet, G. 1938. Étude de certains réseaux de routes. Comptes Rendus Acad Sci 206: 310–313.

    Google Scholar 

  • Cieslik, D. 2004a. The essential of Steiner’s problem in normed planes. Technical report 8, Ernst-Moritz-Arndt-Universität Greifswald, Preprint-Reihe Mathematik.

  • Cieslik, D. 2004b. Shortest connectivity—Introduction with applications in phylogeny, combinatorial optimization, vol. 17. New York: Springer.

    Google Scholar 

  • Cockayne, E.J. 1967. On the Steiner problem. Canadian Mathematical Bulletin 10: 431–450.

    Article  MATH  MathSciNet  Google Scholar 

  • Colbourn, C.J., and C. Huybrechts. 2008. Fully gated graphs: Recognition and convex operations. Discrete Mathematics 308: 5184–5195.

    Article  MATH  MathSciNet  Google Scholar 

  • Courant, R. 1940. Soap film experiments with minimal surfaces. The American Mathematical Monthly 47: 167–174.

    MathSciNet  Google Scholar 

  • Courant, R., and H. Robbins. 1941. What is mathematics?. London: Oxford University Press.

    Google Scholar 

  • Dahan-Dalmedico, A. 1986. Un texte de philosophie mathématique de Gergonne. Revue d’histoire des sciences 39: 97–126.

    Article  MATH  MathSciNet  Google Scholar 

  • de Fermat, P. 1891. Oeuvres, vol. 1.

  • Descartes, R. 1896. Oeuvres de Descartes, vol. II. Paris: J. Vrin.

    Google Scholar 

  • Du, D.Z., and W. Wu. 2007. Approximations for Steiner minimum trees. In Handbook of approximation algorithms and metaheuristics. Chapman and Hall/CRC.

  • Du, D.Z., F.K. Hwang, G.D. Song, and G.Y. Ting. 1987a. Steiner minimal trees on sets of four points. Discrete and Computational Geometry 2: 401–414.

    Article  MATH  MathSciNet  Google Scholar 

  • Du, D.Z., F.K. Hwang, and J.F. Weng. 1987b. Steiner minimal trees for regular polygons. Discrete Computational Geometry 2: 65–84.

    Article  MATH  MathSciNet  Google Scholar 

  • Franksen, O.I., and I. Grattan-Guiness. 1989. The earliest contribution to location theory? Spatio-economic equilibrium with Lamé and Clapeyron, 1829. Mathematics and Computers in Simulation 31: 195–220.

    Article  MATH  MathSciNet  Google Scholar 

  • Gander, M.J., K. Santugini, and A. Steiner. 2008. Shortest road network connecting cities. Bollettino dei docenti di matematica 56: 9–19.

    Google Scholar 

  • Garey, M.R., R.L. Graham, and D.S. Johnson. 1977. The complexity of computing Steiner minimal trees. SIAM Journal on Applied Mathematics 32(4): 835–859.

    Article  MATH  MathSciNet  Google Scholar 

  • Gergonne, J.D. 1810. Solutions purement géométriques des problèmes de minimis proposés aux pages 196, 232 et 292 de ce volume, et de divers autres problèmes analogues. Annales de Mathématiques pures et appliquées 1: 375–384.

    Google Scholar 

  • Gilbert, E.N. 1967. Minimum cost communication networks. Bell System Technical Journal 46: 2209–2227.

    Article  Google Scholar 

  • Gilbert, E.N., and H.O. Pollak. 1968. Steiner minimal trees. SIAM Journal on Applied Mathematics 16(1): 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  • Guggenbuhl, L. 1959. Gergonne, founder of the Annales de Mathmatiques. The Mathematics Teacher 52(8): 621–629.

    Google Scholar 

  • Hammersley, J.M. 1961. On Steiner’s network problem. Mathematika 8: 131–132.

    Article  MATH  Google Scholar 

  • Hanan, M. 1966. On Steiner’s problem with rectilinear distance. SIAM Journal on Applied Mathematics 14(2): 255–265.

    Article  MATH  MathSciNet  Google Scholar 

  • Heinen, F. 1834. Über Systeme von Kräften. G. D. Bädeker.

  • Hoffmann, E. 1890. Über das kürzeste Verbindungssystem zwischen vier Punkten der Ebene. In Program des Königlichen Gymnasiums zu Wetzlar für das Schuljahr von Ostern 1889 bis Ostern 1890. Schnitzler.

  • Jarník, V., and M. Kössler. 1934. O minimálních grafeth obeahujících n daných bodú. Cas Pest Mat a Fys 63: 223–235.

    Google Scholar 

  • Korte, B., and J. Nesetril. 2001. Vojtech Jarnik’s work in combinatorial optimization. Discrete Mathematics 235: 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  • Krarup, J., and S. Vajda. 1997. On Torricelli’s geometrical solution to a problem of Fermat. IMA Journal of Management Mathematics 8(3): 215–224. doi:10.1093/imaman/8.3.215.

    Article  MATH  MathSciNet  Google Scholar 

  • Kupitz, Y.S., and H. Martini. 1997. Geometric aspects of the generalized Fermat–Torricelli problem. In Bolyai Society Mathematical Studies, vol. 6, ed. I. Barany, and K. Boroczky, 55–127. Budapest: Intuitive Geometry, Janos Bolyai Mathematical Society.

    Google Scholar 

  • Lamé, G., and B. Clapeyron. 1829. Mémoire sur lapplication de la statique à la solution des problèmes relatifs à la théorie des moindres distances. Journal des Voies et Communications 10: 26–49.

    Google Scholar 

  • Melzak, Z.A. 1961. On the problem of Steiner. Canad Math Bull 4(2): 143–148.

    Article  MATH  MathSciNet  Google Scholar 

  • Menger, K. 1931. Some applications of point-set methods. Annals of Mathematics, Second Series 32: 739–760.

    Article  MathSciNet  Google Scholar 

  • Miehle, W. 1958. Link-length minimization in networks. Operations Research 6(2): 232–243.

    Article  MathSciNet  Google Scholar 

  • Ollerenshaw, D.K. 1978. Minimum networks linking four points in a plane. Bulletin of the Institute of Mathematics and its Applications 15: 208–211.

    MathSciNet  Google Scholar 

  • Pollak, H. 1978. Some remarks on the Steiner problem. Journal of Combinatorial Theory, Series A 24(3): 278–295.

    Article  MATH  MathSciNet  Google Scholar 

  • Rubinstein, J.H., D.A. Thomas, and N.C. Wormald. 1997. Steiner trees for terminals constrained to curves. SIAM Journal on Discrete Mathematics 10(1): 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  • Schreiber, P. 1986. Zur Geschichte des sogenannten Steiner-Weber-Problems. Technical report, Wissenschaftliche Zeitschrift der Ernst-Moritz-Arndt-Universität Greifswald, Mathematisch-Naturwissenschaftliche Reihe. 58.

  • Schumacher, H.C. 1810. Géométrie analitique. Solution analitique d’un problème de géométrie. Annales de Mathématiques pures et appliquées 1: 193–195.

    MathSciNet  Google Scholar 

  • Scriba, C.J., and P. Schreiber. 2010. 5000 Jahre Geometrie. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Simpson, T. 1750. The Doctrine and applications of fluxions. London: John Nourse Publisher.

    Google Scholar 

  • Steiner, J. 1882. Gesammelte Werke, vol. II. Berlin: Reimer.

    Google Scholar 

  • Stigler, S.M. 1976. The anonymous Professor Gergonne. Historia Mathematica 3(1): 71–74.

    Article  MATH  MathSciNet  Google Scholar 

  • Tédenat, M. 1810. Questions résolues. Solution du premier des deux problèmes proposés à la page 196 de ce volume. Annales de Mathématiques pures et appliquées 1: 285–291.

    Google Scholar 

  • Torricelli, E. 1919. De maximis et minimis. In Opere di Evangelista Torricelli, ed. G. Loria, and G. Vassura. Faenza, Italy.

  • Viviani, V. 1659. De maximis et minimis geometrica divination in quintum Conicorum Apollonii Pergaei, Vol. II. Florence, Italy.

  • Warme, D.M. 1998. Spanning Trees in Hypergraphs with Applications to Steiner Trees. PhD thesis, Computer Science Department, The University of Virginia

  • Warme, D.M., P. Winter, and M. Zachariasen. 1999. Exact solutions to large-scale plane Steiner tree problems. In Proceedings of the tenth annual ACM-SIAM symposium on discrete algorithms, 979–980.

  • Warme, D.M., P. Winter, and M. Zachariasen. 2001. GeoSteiner 3.1. Department of Computer Science, University of Copenhagen (DIKU), http://www.diku.dk/geosteiner/.

  • Winter, P., and M. Zachariasen. 1997. Euclidean Steiner minimum trees: an improved exact algorithm. Networks 30: 149–166.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Two of the authors, Marcus Brazil and Doreen Thomas, were partially supported in the writing of this paper by a grant from the Australian Research Council. We would also like to thank: Francois Lauze (University of Copenhagen) and Morgan Tort (The University of Melbourne) for their generous assistance with the French translations required for this paper; Henry Pollak for useful commentary on Gauss’ letters; Pavol Hell (Simon Fraser University) for assistance with translating (Jarník and Kössler 1934); Jakob Krarup (University of Copenhagen) for help with providing some original sources; Donald Knuth for helpful comments and suggestions on an earlier draft of this paper; and Konrad Swanepoel for alerting us to the existence of the paper of Menger (1931).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Brazil.

Additional information

Communicated by: Jesper Lützen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brazil, M., Graham, R.L., Thomas, D.A. et al. On the history of the Euclidean Steiner tree problem. Arch. Hist. Exact Sci. 68, 327–354 (2014). https://doi.org/10.1007/s00407-013-0127-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-013-0127-z

Keywords

Navigation